展开

关键词

浅谈协方差矩阵

协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义: ? 这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为: ? 可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。 四、Matlab协方差实战 必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。 图 4 计算对角线上的方差 这样,我们就得到了计算协方差矩阵所需要的所有数据,可以调用Matlab的cov函数直接得到协方差矩阵: ? 图 5 使用Matlab的cov函数直接计算样本的协方差矩阵 计算的结果,和之前的数据填入矩阵后的结果完全相同。 五、总结 理解协方差矩阵的关键就在于牢记它的计算是不同维度之间的协方差,而不是不同样本之间。

2.9K20

方差、协方差协方差矩阵的概念及意义 的理解

最近一直围绕着方差,协方差协方差矩阵在思考问题,索性就参考一些博文加上自己的理解去思考一些问题吧。 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 协方差的结果有什么意义呢? 总结 必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。 理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了

1.9K30
  • 广告
    关闭

    什么是世界上最好的编程语言?丨云托管征文活动

    代金券、腾讯视频VIP、QQ音乐VIP、QB、公仔等奖励等你来拿!

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python协方差矩阵处理脑电数据

    Rose小哥今天主要介绍一下MNE中如何用协方差矩阵来处理脑电数据的。 MNE中的许多方法,包括源估计和一些分类算法,都需要根据记录进行协方差估计。 在本教程中,我们将介绍传感器协方差计算的基础知识,并构建一个噪声协方差矩阵,该矩阵可用于计算最小范数逆解. 诸如MNE的源估计方法需要从记录中进行噪声估计。 在本教程中,我们介绍了噪声协方差的基础知识,并构造了一个噪声协方差矩阵,该矩阵可在计算逆解时使用。 下面我们将结合代码来进行分析。 应该如何规范协方差矩阵? 估计的协方差可能在数值上不稳定,并且倾向于在估计的源振幅和可用样本数之间引起相关性。 因此,MNE手册建议对噪声协方差矩阵进行正则化(请参阅对噪声协方差矩阵进行正则化),尤其是在只有少量样本可用的情况下。 然而,要说出样本的有效数量并不容易,因此要选择适当的正则化。

    38920

    机器学习数学笔记|期望方差协方差矩阵

    协方差 定义: 性质: 协方差和独立/不相关 X 和 Y 独立时,E(X,Y)=E(X)E(Y)而 Cov(X,Y)=E(XY)-E(X)E(Y),从而当 X 和 Y 独立时,Cov(X,Y) 协方差是两个随机变量具有相同方向变化趋势的度量 若 Cov(X,Y)大于 0,它们的变化趋势相同 若 Cov(X,Y)小于 0,它们的变化趋势相反 若 Cov(X,Y)等于 0,称 X 和 Y 不相关 协方差的上界 则 当且仅当和之间有线性关系时等号成立表示方差 再谈独立与不相关 因为上述定理的保证,使得"不相关"事实上即"线性独立" 即:若 X 与 Y 不相关,说明 X 和 Y 之间没有线性关系( 协方差矩阵 当我们讨论两个事件时,我们称事件为 X,Y,其中对于 X 事件有很多种情况,我们可以用向量的方式表示一个事件 X 的不同情况. 我们原先讨论的是 X,Y 两个事件的协方差情况,如果对于 n 个事件,我们怎样计算不同事件之间的协方差?--这里引入协方差矩阵的概念. ?

    31330

    机器学习中的统计学——协方差矩阵

    接上篇:机器学习中的统计学——概率分布 在之前的几篇文章中曾讲述过主成分分析的数学模型、几何意义和推导过程(PS:点击即可阅读),这里面就要涉及到协方差矩阵的计算,本文将针对协方差矩阵做一个详细的介绍 ,其中包括协方差矩阵的定义、数学背景与意义以及计算公式的推导。 协方差矩阵定义 矩阵中的数据按行排列与按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个observation(or sample),那么每一列就是一个随机变量。 ? 协方差矩阵: ? 协方差矩阵的维度等于随机变量的个数,即每一个 observation 的维度。在某些场合前边也会出现 1 / m,而不是 1 / (m - 1). 3. 求解协方差矩阵的步骤 举个例子,矩阵 X 按行排列: ? 1. 求每个维度的平均值 ? 2. 将 X 的每一列减去平均值 ? 其中: ? 3. 计算协方差矩阵 ?

    99240

    样本协方差矩阵共轭梯度和MINRES算法的普适性

    中文题目:样本协方差矩阵共轭梯度和MINRES算法的普适性 中文摘要:我们提出了解决线性系统的两种Krylov子空间方法的概率分析。 我们证明了将共轭梯度和MINRES算法应用于满足某些标准矩条件的一类样本协方差矩阵所产生的残差向量范数的中心极限定理。 这个证明包括为所谓的谱测度建立一个四矩定理,特别意味着由Lanczos迭代产生的矩阵的普适性。然后中心极限定理暗示了一个几乎确定的迭代计数的迭代方法的问题。 原文作者:Elliot Paquette, Thomas Trogdon 原文地址:https://arxiv.org/abs/2007.00640 样本协方差矩阵共轭梯度和MINRES算法的普适性.

    36720

    格林函数的协方差矩阵及其在机器学习中的应用(CS LG)

    接下来我们考虑一个由归一化格林函数组成的协方差矩阵,它被看作是概率密度函数。通过贝叶斯方法,协方差矩阵给出了具有预测均值的预测分布μ以及置信区间[μ-2s, μ+2s],其中s代表标准差。 原文作者:Tomoko Nagai 原文地址:https://arxiv.org/abs/2004.06481 格林函数的协方差矩阵及其在机器学习中的应用(CS LG).pdf

    34210

    教程 | 从特征分解到协方差矩阵:详细剖析和实现PCA算法

    选自deeplearning4j 机器之心编译 参与:蒋思源 本文先简要明了地介绍了特征向量和其与矩阵的关系,然后再以其为基础解释协方差矩阵和主成分分析法的基本概念,最后我们结合协方差矩阵和主成分分析法实现数据降维 这个矩阵对角线上的两个元素分别是两特征的方差,而其它元素是 a 和 b 的协方差。两者被统一到了一个矩阵的,因此我们可以利用协方差矩阵描述数据点之间的方差和协方差,即经验性地描述我们观察到的数据。 协方差矩阵作为实对称矩阵,其主要性质之一就是可以正交对角化,因此就一定可以分解为特征向量和特征值。 当协方差矩阵分解为特征向量和特征值之后,特征向量表示着变换方向,而特征值表示着伸缩尺度。 因为协方差矩阵为实对称矩阵(即 Aij=Aji),所以其必定可以通过正交化相似对角化。因为这两个变量的协方差为正值,所以这两个变量的分布成正相关性。 而在实际操作中,我们希望计算特征之间的协方差矩阵,并通过对协方差矩阵的特征分解而得出特征向量和特征值。如果我们将特征值由大到小排列,相对应的特征向量所组成的矩阵就是我们所需降维后的数据。

    2.4K91

    【通俗理解】协方差

    协方差的公式(及其变形)不难选出正确答案(给公众号发送“协方差”获得答案)。希望通过此题,让大家熟悉一下一些概念:均值/期望,方差,协方差,相关系数。 最基本的就是均值/期望和方差了,还有各种高阶矩阵。 描述两个随机变量的关系,我们有联合概率密度。同样地,我们可以用简单的一个数字来刻画这两个随机变量的一些关系。最常用的是协方差和相关系数。 看公式知道,相关系数就是归一化的协方差。 ? 根据上面协方差公式(上面分数的分子部分),两个变量同时大于均值或小于均值时,加分,否则减分。加减分数由当前观察值和均值的差决定。 你变大,同时我也变大,说明两个变量是同向变化的,这时协方差就是正的。你变大,同时我变小,说明两个变量是反向变化的,这时协方差就是负的。 自相关矩阵。主对角元素是某个维度的自相关,辅对角线是不同维度的互相关。如果各个维度相对独立,则互相关为0,对应的协方差矩阵是对角阵。 3. 协方差矩阵。和自相关矩阵差一个常数矩阵项。

    86120

    协方差详解

    协方差(Covariance) 协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量同一个变量的情况。 如果协方差是正的,那么两个变量的取值倾向相同,要大一起大,要小一起小;如果协方差是负的,那么两个变量的取值倾向相反,一个变量倾向于取得相对较大的值的同时,另一个变量会倾向于取得相对较小的值;如果协方差是零 补充 随机向量x∈Rnx\in \mathbb{R}^nx∈Rn的协方差矩阵是一个n×nn\times nn×n的矩阵,并且满足: Cov(x)i,j=Cov(xi,xj)Cov(x)_{i,j} = Cov(x_i, x_j)Cov(x)i,j​=Cov(xi​,xj​) 协方差矩阵的对角元是方差: Cov(xi,xi)=Var(xi)Cov(x_i,x_i) = Var(x_i)Cov(xi​ 、相关系数 终于明白协方差的意义了

    36420

    【Scikit-Learn 中文文档】协方差估计 经验协方差 收敛协方差 稀疏逆协方差 Robust 协方差估计 - 无监督学习 - 用户指南 | ApacheCN

    更准确地说,样本的最大似然估计是相应的总体协方差矩阵的无偏估计。 收敛协方差 2.8.1. 基本收敛 尽管是协方差矩阵的无偏估计, 最大似然估计不是协方差矩阵的特征值的一个很好的估计, 所以从反演得到的精度矩阵是不准确的。 有时,甚至出现数学原因,经验协方差矩阵不能反转。 为了避免这样的反演问题,引入了经验协方差矩阵的一种变换方式:shrinkage 。 , 它使得估计协方差和实际协方差矩阵之间的均方差进行最小化。 稀疏逆协方差 协方差矩阵的逆矩阵,通常称为精度矩阵(precision matrix),它与部分相关矩阵(partial correlation matrix)成正比。 它给出部分独立性关系。

    1.5K50

    数理统计----协方差公式推导

    协方差公式推导 cov(X,Y)=∑ni=1(Xi−X¯)(Yi−Y¯)n=E[(X−E[X])(Y−E[Y])] cov(X,Y)=∑i=1n(Xi−X¯)(Yi−Y¯)n=E[(X−E[X])(

    1.6K20

    《互协方差注意力Transformer:XCiT》

    我们基于key和query的互协方差矩阵,提出一个转置版本的自注意力操作(协方差注意力),让其在token维上的操作转变成特征维上的操作,进而降低自注意力复杂度为线性增长。 Gram矩阵协方差矩阵的联系 未归一化的协方差矩阵可以写为 ,而格拉姆矩阵其实就是矩阵内积,即 ,格拉姆矩阵一般在风格迁移用的比较多,本质上就是计算向量之间的相关度。 原始的自注意力计算过程可以看作是类似格拉姆矩阵的计算过程: 我们考虑使用互协方差矩阵的形式去替代,即: 这样可以把复杂度减少 互协方差注意力 互协方差注意力公式如下: l2norm和缩放 为了让计算的互协方差矩阵元素值在 Block-diagonal协方差注意力 与原始的多头注意力机制相似,受Group Normalization启发,我们并没有让所有特征互相交互,而是对其分组,对每个头单独应用协方差注意力 其中 , 总结 作者从互协方差矩阵和格拉姆矩阵之间的联系,结合自注意力复杂度高的原因,进而推导出一个极为简单的注意力转置形式,能够让复杂度从序列数量的平方变为特征的平方,在这一前提下减少特征数便可以大大减小模型参数

    15620

    方差、标准差、协方差

    协方差 协方差用于衡量两个变量偏离其均值的程度。 方差和标准差一般用来描述一维数据,但是我们想要了解两组数据之间是否存在一定的联系,可以仿照方差公式,构造协方差公式如下: image.png 4.1 协方差矩阵 协方差矩阵是一个对称的矩阵; 对角线上是各个维度的方差 image.png 4.2 相关系数 协方差作为描述X和Y相关程度的方法,在同一物理量纲下有一定的作用。但是两个变量采用不同的量纲时,他们的协方差在数值上会表现出很大的差异。

    2.2K10

    矩阵分析(十一)酉矩阵、正交矩阵

    矩阵 若n阶复矩阵A满足 A^HA=AA^H=E 则称A是酉矩阵,记为A\in U^{n\times n} 设A\in C^{n\times n},则A是酉矩阵的充要条件是A的n个列(或行)向量是标准正交向量组 酉矩阵的性质 A^{-1}=A^H\in U^{n \times n} \mid \det A\mid=1 A^T\in U^{n\times n} AB, BA\in U^{n\times n} 酉矩阵的特征值的模为 1 标准正交基到标准正交基的过渡矩阵是酉矩阵 酉变换 设V是n维酉空间,\mathscr{A}是V的线性变换,若\forall \alpha, \beta \in V都有 (\mathscr{A}(\alpha ), \mathscr{A}(\beta))=(\alpha,\beta) ---- 正交矩阵 若n阶实矩阵A满足 A^TA=A^A=E 则称A是正交矩阵,记为A\in E^{n\times n} 设A (或正交矩阵) ---- 满秩矩阵的QR分解 若n阶实矩阵A\in \mathbb{C}^{n\times n}满秩,且 A = [\alpha_1,...

    1.7K30

    使用Python计算方差协方差相关系数

    , Y)}{\sigma_x\sigma_y} 相关系数消除了两个变量变化幅度的影响,而只是单纯反应两个变量每单位变化时的相似程度 协方差矩阵 协方差只能表示两个随机变量的相关程度(二维问题),对于大于二维的随机变量 ,可以使用协方差矩阵表示. 协方差矩阵的每一个值就是对应下标的两个随机变量的协方差 对于三维协方差矩阵,C=\begin{bmatrix}Cov(X, X) & Cov(X, Y) & Cov(X, Z) \\ Cov(Y, X) np.random.randint(0, 9, 1000) # 计算平均值 mx = x.mean() my = y.mean() # 计算标准差 stdx = x.std() stdy = y.std() # 计算协方差矩阵 (和上面的协方差矩阵是类似的) coefxy = np.corrcoef(x, y) print(coefxy) 一组可能的输出结果: [[6.83907508 0.10925926] [0.10925926

    2.9K40

    通俗解释协方差与相关系数

    对于非理工科的小白来说,如何清晰、形象地理解协方差和相关系数的数学概念呢?没关系,今天红色石头就通过形象生动的例子,通俗易懂地给大家来讲一讲协方差与相关系数。 1. 协方差是怎么来的? 顺便提一下,如果令 Y = X,则协方差表示的正是 X 的方差。 下面,我们根据协方差的公式,分别计算上面三种情况下 X 与 Y 的协方差。 相关系数与协方差什么关系? 我们已经知道了什么是协方差以及协方差公式是怎么来的,如果知道两个变量 X 与 Y 的协方差与零的关系,我们就能推断出 X 与 Y 是正相关、负相关还是不相关。 那么有一个问题:协方差数值大小是否代表了相关程度呢?也就是说如果协方差为 100 是否一定比协方差为 10 的正相关性强呢? 请看下面这个例子! X2 与 Y2 的协方差竟然比 X1 与 Y1 的协方差还大 100 倍。看来并不是协方差越大,正相关程度越高。这到底是为什么呢?

    70830

    如何通俗的理解协方差、相关系数?

    X变大,Y也变大,说明两个变量是同向变化的,这时协方差就是正的。 X变大,Y变小,说明两个变量是反向变化的,这时协方差就是负的。 加在一起后,其中的一些正负项就会抵消掉,最后平均得出的值就是协方差,通过协方差的数值大小,就可以判断这两个变量同向或反向的程度了。 总而言之, 若协方差为正,则X和Y同向变化; 反之协方差为负,则反向变化; 协方差绝对值越大表示同向或反向的程度越深。 其实方差也是一种特殊的协方差,只不过是X和X之间的协方差。 Part2 相关系数 相关系数的公式为: 其实就是用X、Y的协方差除以X和Y的标准差。 所以相关系数可以看成剔除了两个变量单位的影响、标准化后的特殊协方差。 相关系数是协方差除以标准差,当X或Y的波动变大的时候,它们的协方差会变大,标准差也会变大,这样相关系数的分子分母都变大,相互抵消,变小时也亦然。

    18930

    矩阵分析(十二)正规矩阵、Hermite矩阵

    $A$酉相似于一个上(下)三角矩阵 ---- 例1 已知$A = \begin{bmatrix}0&3&3\\-1&8&6\\2&-14&-10\end{bmatrix}$,求酉矩阵$U$,使得$U^HAU 定理:$\exists U\in U^{n\times n}$,使得$U^{-1}AU$为对角矩阵的充分必要条件为$A^HA=AA^H$ 定义:如果矩阵$A$满足$A^HA=AA^H$,则称其为正规矩阵 ---- Hermite矩阵 定义:$A\in \mathbb{C}^{n\times n}$,若$A^H=A$,则称$A$为Hermite矩阵 定理:Hermite矩阵是正规矩阵,Hermite矩阵的特征值是实数 }{x^Hx} $$ 为实数,称$R(x)$为矩阵$A$的Rayleigh商 定理:由于Hermite矩阵的特征值全部为实数,不妨排列成 $$ \lambda_1 ≥ \lambda_2 ≥ ···≥ ,并求酉矩阵$U$,使得$U^HAU$为对角矩阵 解:$A^H=\begin{bmatrix}\frac{1}{3}&-\frac{1}{3\sqrt{2}}&-\frac{1}{\sqrt{6}}\\

    42350

    相关产品

    • 物联网

      物联网

      提供覆盖“云-管-边-端”的物联网基础设施,面向“消费物联”和 “产业物联”两大物联网赛道提供全方位的物联网产品和解决方案,助力企业高效实现数字化转型。

    相关资讯

    热门标签

    扫码关注腾讯云开发者

    领取腾讯云代金券