首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

原子间的最小距离

是指两个相邻原子之间的最短距离。在固体材料中,原子通过化学键或者范德华力相互结合形成晶体结构。原子间的最小距离取决于晶体结构和原子半径。

不同晶体结构具有不同的原子排列方式,因此原子间的最小距离也会有所不同。常见的晶体结构包括立方晶体、六方晶体、四方晶体、正交晶体等。在每种晶体结构中,原子间的最小距离是固定的,并且可以通过晶体学的方法进行测量和计算。

原子间的最小距离在材料科学和化学领域具有重要意义。它决定了材料的物理性质和化学性质,例如材料的密度、硬度、热膨胀系数等。此外,原子间的最小距离还影响着材料的电子结构和能带结构,对材料的导电性、光学性质等也有一定影响。

在云计算领域,原子间的最小距离并不直接涉及。云计算是一种基于互联网的计算模式,通过将计算资源、存储资源和服务资源提供给用户,实现按需使用和灵活扩展的目的。云计算的关键技术包括虚拟化、分布式计算、自动化管理等。

腾讯云作为一家领先的云计算服务提供商,提供了丰富的云计算产品和解决方案。其中包括云服务器、云数据库、云存储、人工智能服务等。如果您对腾讯云的产品感兴趣,可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【机器学习】--层次聚类从初识到应用

聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小. 数据聚类算法可以分为结构性或者分散性,许多聚类算法在执行之前,需要指定从输入数据集中产生的分类个数。 1.分散式聚类算法,是一次性确定要产生的类别,这种算法也已应用于从下至上聚类算法。 2.结构性算法利用以前成功使用过的聚类器进行分类,而分散型算法则是一次确定所有分类。 结构性算法可以从上至下或者从下至上双向进行计算。从下至上算法从每个对象作为单独分类开始,不断融合其中相近的对象。而从上至下算法则是把所有对象作为一个整体分类,然后逐渐分小。 3.基于密度的聚类算法,是为了挖掘有任意形状特性的类别而发明的。此算法把一个类别视为数据集中大于某阈值的一个区域。DBSCAN和OPTICS是两个典型的算法。

03

一种用Gaussian 16中的GIC功能实现同时扫描多个坐标的方法

势能面扫描是我们用Gaussian常做的计算,一般可以分为刚性扫描和柔性扫描。如果在柔性扫描中给定两个坐标,那么我们将会得到二维势能面。但是有时候我们只希望两个坐标同时变化得到一条势能曲线,这可以通过使用Gaussian中的GIC(广义内坐标)实现。本公众号之前也给出了一个可行的解决方案,见《在Gaussian16中同时扫描两个反应坐标》。但是之前方案的缺点是使用了Link1,在用GaussView打开输出文件时不能很方便地显示能量的变化趋势,这在找能量极大,极小点时会带来困难。因此这里给出了一个新的方案,不使用Link1,让势能曲线可以直观地显示出来。

03

四种聚类方法之比较

聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗、动物植物。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等[1]。  聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。即聚类后同一类的数据尽可能聚集到一起,不同数据尽量分离。  聚类技术[2]正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。 1 聚类算法的分类  目前,有大量的聚类算法[3]。而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。  主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法[4-6]。  每一类中都存在着得到广泛应用的算法,例如:划分方法中的k-means[7]聚类算法、层次方法中的凝聚型层次聚类算法[8]、基于模型方法中的神经网络[9]聚类算法等。  目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。模糊聚类通过隶 属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。目前已有很多关于模糊聚类的算法被提出,如著名的FCM算法等。  本文主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。 2 四种常用聚类算法研究 2.1 k-means聚类算法  k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。  k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地 选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下:

01

突破 | IBM创造出世界最小存储介质,在一个原子上读写一比特数据

授权转载自IBM中国 在IBM圣何塞研究院工作的一个国际研究团队近日宣布,他们成功地创造了目前世界上尺寸最小的磁体-这个磁体仅由单个原子组成。同时,他们还成功地实现了利用这一微小的磁体来存储一个比特的数据。 近日,IBM宣布,它已使用单个原子创造出世界上尺寸最小的磁体 – 并在该磁体上存储了一比特数据。 自从硬盘被发明以来,科学家一直努力试图开发新型制造工艺,让磁存储介质尺寸更小,同时排列更密集,从而可以存储更多的信息。目前保存一个比特信息需要大约10万个原子。而IBM科学家的研究为我们带来了全新的可能性,

07

黑科技 | 全球最小线宽激光器诞生于德国,仅0.01 Hz

因为过于先进,研究人员不得不研发出两个一样的激光器让他们互相比较。 激光器,简单来说就是可以发射激光的装置。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。 通常来说,衡量一个激光器是否属于顶尖装置的标准,就是看它的线宽是多少,最好的激光器可以具有窄到几kHz的线宽,但是对于特别精确的仪器,如光学原子钟,就需要将之进一步收窄。而另一种衡量激光束质量的方式是光频率的稳定性,也就是在过了一段时间之后,光波的震荡会出现不

03
领券