机器学习算法目录: 一、模型选择与评价: 1,误差:误差由偏差(bias)、方差(variance)和噪声(noise)组成; 2,多分类学习:一对一、一对其余、多对多(参考:西瓜书p63);单标签二分类...3,交叉验证,网格搜索: 4,模型评价相关指标: 5,模型持久化(modelpersistence): 6,验证曲线(validationcurves): 二、机器学习部分: 1,线性回归: 最小二乘...10,概率图模型(参考邱老师的PPT) 11,降维学习:主成分分析(PCA),线性判别分析(LDA)、特征选择;特征降维可分为有监督(LDA)和无监督(LSA、NMF);主题模型(LDA、LSA) 要点...12,集成学习(已整理为:机器学习5-8):随机森林(Extra tree、Totally Random Trees Embedding、Isolation forest)、Adboost、GBDT、XGBoost...: 1,马尔科夫决策过程(MarkovDecision Processes): 2,Q-Learning: 3,Sarsa: 五、迁移学习:多模态学习 六、按监督,非监督分类: 1),监督学习: 1.1
吴恩达 Cousera 机器学习课程Andrew Ng 的机器学习课程(Machine Learning | Coursera)是很多人的启蒙课程,难度适中且完全免费。...另一个比较直接的观察是如果大家在知乎上搜索“机器学习如何入门?”...,大部分答案都提到了 Andrew 的这门入门课程,所以这是一门绝对的口碑课程,详细讨论可以参考:微调:为何国人迷恋吴恩达的机器学习课?。...周志华《机器学习》周志华老师的《机器学习》也被大家亲切的叫做“西瓜书”。虽然只有几百页,但内容涵盖比较广泛。然而和其他人的看法不同,我建议把西瓜书作为参考书而不是主力阅读书。...这本书更适合作为学校的教材或者中阶读者自学使用,入门时学习这本书籍难度稍微偏高了一些。
从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。...是什么样的数据库撑起了 2021 年的双 11 双 12 的稳定进行?...《数据 Cool 谈》第三期,阿里巴巴大淘宝技术部双 12 队长朱成、阿里巴巴业务平台双 11 队长徐培德、阿里巴巴数据库双 11 队长陈锦赋与 InfoQ 主编王一鹏,一同揭秘了双 11 双 12 背后的数据库技术...在双 11 双 12,这种方式的弊端会被进一步放大。数据显示,在双 11 秒杀系统中,秒杀峰值交易数据每秒超过 50 万笔,是一个非常典型的电商秒杀场景。...发展近 20 年,淘宝积累了千亿级别的订单数量,“千亿级别的订单量的索引列,全部丢进内存的话,我的机器成本肯定是兜不住的。”
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | ynaughty 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕...确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲述了如何选择机器学习的各种方法。...其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习中的一些基本算法以及它们的原理。...总结 本文利用二维交互图帮助大家理解机器学习的基本算法,希望能增加大家对机器学习的各种方法有所了解。所有的代码可以在参考中找到。欢迎大家来和我交流。...Victorjs 2D向量库 推荐一些机器学习的路线图 https://ml-cheatsheet.readthedocs.io/en/latest/ 10大机器学习算法 https://www.gitbook.com
机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于Python、Java等的很多机器学习算法基本都被前人实现过很多次了。...在这样的背景下, InfoWorld近日公布了机器学习领域11个最受欢迎的开源项目,这11个开源项目大多与垃圾邮件过滤、人脸识别、推荐引擎相关。...Mahout内包含了聚 类、分类、推荐等很多经典算法,并且提供了很方便的云服务的接口。...Weka作为一个公开的数据挖掘工作平台,集合了大量能够承担数据挖掘人物的机器学习算法,包括了对数据进 行预处理、分类、回归、聚类等等。...Vuples项目与之类似,使用F#语言编写,并且适用于.Net平台上。 ConvNetJS ConvNetJS是一款基于JavaScript的在线深度学习库,它提供了在线的深度学习训练方式。
http://blog.csdn.net/u011239443/article/details/77435463
以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。...《Machine Learning》(《机器学习》) 作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。...《机器学习及其应用》 周志华、杨强主编。来源于“机器学习及其应用研讨会”的文集。...这本书讲了很多机器学习前沿的具体的应用,需要有基础的才能看懂。如果想了解机器学习研究趋势的可以浏览一下这本书。关注领域内的学术会议是发现研究趋势的方法嘛。...极牛的书,可数学味道太重,不适合做机器学习的 《All Of Statistics》 机器学习这个方向,统计学也一样非常重要。
之前发布了多款ubuntu系统的ROS学习镜像,主要是基于校内和学生实验编程实践出发。 如果是机器人初学者,还是推荐使用最主流操作系统windows学习这款ROS1和2。 ?...win10环境可以预装如下机器人操作系统 ros1-melodic ros1-noetic ros2-dashing ros2-foxy 并且也会支持后续ros更新而无需更换操作系统或者预装linux系统
1、推荐系统涉及的知识 电子商务业务知识、网站架构运营、机器学习算法、数学建模、大数据平台… 2、推荐系统涉及的常见算法 聚类、关联模式挖掘、大规模矩阵运算、文本挖掘、复杂网络和图论计算等… 3...、推荐系统分类 Ⅰ、基于应用领域分类 电子商务推荐系统、社交好友推荐系统、搜索引擎推荐系统、信息内容推荐系统...... Ⅱ、基于设计思想分类 基于协同过滤的推荐系统、基于内容的推荐系统、基于知识的推荐系统...、混合推荐系统...... Ⅲ、基于使用何种数据分类 基于用户行为的推荐系统、基于用户标签的推荐系统、基于社交网络数据的推荐系统、基于上下文信息的推荐系统...... 4、实现协同过滤的步骤 ①收集用户偏好数据...,基于邻域的推荐算法又分为基于物品推荐算法和基于用户推荐算法。 ...、根据用户标签进行推荐、基于隐语义的推荐算法等。
朴素贝叶斯可以分为贝努利贝叶斯(BernoulliNB)、高斯贝叶斯(GaussianNB)和多项式贝叶斯(MultinomailNB)。贝努利贝叶斯(Bern...
该项目包括几种内置体系结构,如多层感知器,多层长短期记忆网络,液态机器和能够训练真实网络的培训师 ?...PAIR-code / deeplearnjs - 硬件加速深度学习//机器学习//为网络提供NumPy库。 https://github.com/PAIR-code/deeplearnjs 7....有人认为这个项目是convnetjs的继任者,所以实现一个基于全栈式神经网络的机器学习框架和扩展的强化学习支持。...10. mljs 一组库提供由mljs组织开发的用于Javascript的机器学习工具,其中包括有监督学习和无监督学习,人工神经网络,回归算法以及用于统计学,数学等的支持库。下面是一个简短的【演练】。.../hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5 mljs --https://github.com/mljs 11
内容来源:2018 年 5 月 26 日,美团点评技术专家杨一帆在“饿了么技术沙龙·第25弹【搜索推荐】”进行《Why WAI: 美团点评搜索推荐机器学习平台》演讲分享。...阅读字数:3308 | 9分钟阅读 摘要 本次分享主要介绍如何从机器学习实践过程中不断总结经验,搭建集数据处理、特征工程、模型训练、打分预测、实时监控、在线学习等步骤为一体的机器学习平台WAI,以及该平台如何赋能业务不断优化搜索推荐用户体验...美团点评的机器学习应用大部分还是围绕业务来开展,包括搜索推荐、金融、外卖、打车、广告等。 机器学习通用流程 机器学习整个流程包含几个部分。...Why 流派对比 机器学习系统可以分为平台派和工具派。...平台派典型的代表有PAI和WAI,它们的定位是用来托管完整的机器学习流程,赋能所有业务接入AI的能力,特点在于交互性强,通过简单拖拽就能完成配置,流程清晰所见即所得。
http://www.jikexueyuan.com/ 极客学院,各种学习资料,但是视频大部分收费的,如果有特别想看的课程可以学习,实在不行看看wiki。...http://www.imooc.com/course/list 慕课网,前端课程比较好,推荐看里面的沙龙课程,知道一线前言公司用什么,怎么用。...http://www.chuanke.com/ 百度传课,百度3000w收购的一个类12k平台,好多其他平台收费的在这里可以找到免费版本。...https://channel9.msdn.com/ channel9平台是微软的一个主要的传播微软技术的平台,另一个好处是可以学习英文,IOT课程值得推荐。...还有一批专业的IOS开发,移动开发,大数据的,前端的专业社区就不一一推荐了。
;散列表;搜索树;动态规划;贪心;图;字符串匹配等);再之后我们重回Deep learning; 推荐阅读: 1. ...机器学习-1:MachineLN之三要素 2. 机器学习-2:MachineLN之模型评估 3. 机器学习-3:MachineLN之dl 4. 机器学习-4:DeepLN之CNN解析 5. ...机器学习-5:DeepLN之CNN权重更新(笔记) 6. 机器学习-6:DeepLN之CNN源码 7. 机器学习-7:MachineLN之激活函数 8. ...机器学习-8:DeepLN之BN 9. 机器学习-9:MachineLN之数据归一化 10. 机器学习-10:MachineLN之样本不均衡 11. ...机器学习-11:MachineLN之过拟合 12. 机器学习-12:MachineLN之优化算法 13. 机器学习-13:MachineLN之kNN 14.
前言: 上一篇介绍了线性SVM还有一些尾巴没有处理,就是异常值的问题。 软间隔 线性可分SVM中要求数据必须是线性可分的,才可以找到分类的超平面,但是有的时候...
反映了分类器所能达到的最好性能,即通过机器学习所能产生的模型精度的理论上限。 若误判损失 ? 用0/1损失来表示,则条件风险为 ? ,于是,最小化分类错误率的贝叶斯最优分类器为 ?...与朴素贝叶斯分类器相似,AODE无需模型选择,既能通过预计计算节省预测时间,也能采取懒惰学习方式在预测时再进行计数,并且易于实现增量学习。...以下代码为朴素贝叶斯分类器代码: # 代码和数据集来源于机器学习实战,https://github.com/AnnDWang/MachineLearning/blob/master/thirdbook/...testEntry)) print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)) testingNB() 参考: 《机器学习...》 《统计学习方法》 《机器学习实战》
机器学习技术类书单推荐,共11本: 《机器学习》 《图解机器学习》 《机器学习实战》【有电子版】 《机器学习系统设计》【有电子版】 《Python机器学习基础教程》【有电子版】 《Python机器学习经典实例...通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。 实战2:必应团队教你ML系统设计 ?...展示各类机器学习方法的优势与潜在问题 技术与理论并重,通过丰富的商业案例实现机器学习高级概念 在AWS等云平台上利用R亲手实践机器学习 机器学习是近年来的热门技术话题,R语言是处理其中大量数据的有力工具...此外还通过详细的例子和现实应用讲解了常见的机器学习模型,包括推荐系统、分类、回归、聚类和降维。...Mahout核心团队权威力作 大数据时代机器学习的实战经典 Mahout作为Apache的开源机器学习项目,把推荐系统、分类和聚类等领域的核心算法浓缩到了可扩展的现成的库中。
机器学习API隐藏了创建和部署机器学习模型的复杂性,让开发者能够专注于数据挖掘和用户体验。...问答——为主文档来源触发的查询提供直接的答案 用户模型——根据给定的文本预测人们的社会特征 Microsoft Azure机器学习API Microsoft Azure机器学习是一个用于处理海量数据并构建预测型应用程序的平台...,该平台提供的功能有自然语言处理、推荐引擎、模式识别、计算机视觉以及预测建模等,为了迎合数据科学家的喜好,Microsoft Azure机器学习平台还增加了对Python的支持,用户能够直接将Python...、推荐和智能路由等用户场景。...Amazon机器学习API Amazon机器学习API让用户不需要大量的数据专家就能够实现模型构建、数据清洗和统计分析等工作,简化了预测的实现流程。
量化投资与机器学习微信公众号,是业内垂直于量化投资、对冲基金、Fintech、人工智能、大数据等领域的主流自媒体。...今天的推荐来自AQR,是关于机器学习论文的推荐。从“实证资产定价”,到“金融领域如何有效的利用机器学习模型”,再到“如何更有效的进行策略测试”等。...在最广泛的层面上,我们发现与传统方法相比,机器学习在资产定价的应用有着更好的效果。 本文建立的机器学习模型在样本外收益的预测给出了更高的R平方。...资产管理中,机器学习面临着一系列独特的挑战,与机器学习擅长的其他领域明显不同。理解这些差异对于开发有效的方法和资产管理中机器学习的现实期望至关重要。...我们讨论了各种有益的用例和潜在的陷阱,并强调了经济理论和专业知识在金融领域应用机器学习的重要性。
来源:Medium 编译:weakish 编者按:Statsbot数据科学家Daniil Korbut简明扼要地介绍了用于推荐系统的主流机器学习算法:协同过滤、矩阵分解、聚类、深度学习。...当我们想向用户推荐东西时,最符合逻辑的做法是找到有相似兴趣的人,分析他们的行为,然后给我们的用户推荐相同的东西。 或者我们可以查看与用户之前所购类似的物品,并进行相应的推荐。...聚类 前面两个推荐算法非常简单,比较适合小型系统。到目前为止,我们将推荐问题看作一个监督学习任务。现在到了应用无监督方法来解决这个问题的时候了。...聚类也能提升复杂推荐系统的性能。 深度学习 十年来,神经网络有一个巨大的飞跃。今天,神经网络被应用到许多领域,正逐渐取代传统的机器学习方法。我想谈一下YouTube使用的深度学习方法。...评分最高的那些视频将被推荐给用户。 使用这一两步方法,我们可以基于一个非常巨大的视频语料库推荐视频,同时保证推荐的少量视频是个性化的。这一设计也允许我们混合从其他来源生成的候选视频。
领取专属 10元无门槛券
手把手带您无忧上云