首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    快手于冰:咱客户端工程师,还可以往哪个方向纵深?

    1、2019 年,于冰在一次演讲中提出了这样一个观点——5G 很可能不是革命,反而更像是一种催化剂,在 5G 的加持下,视频会像空气和水一样无处不在。这句话得从两个角度理解。 2、从用户需求来看,图文到视频的升级是必然趋势。作为一种多媒体的载体,视频内容的信息量、丰富程度、可观看性和可消费性都是非常大的,给用户带来了全方位的沉浸感体验。再加上推荐算法的赋能,视频显然是一种体验更好的内容消费形式,如今的短视频大潮也印证了这一点。 3、从基础设施的进步来看,整个网络基础设施和移动端体验都在持续提升。包括千兆固网

    02

    BRAIN:额颞叶痴呆患者情绪加工的任务态功能磁共振研究

    情绪信息加工受损是额颞叶痴呆综合征的一个核心特征,但其潜在的神经机制却很难被描述和测量。要想在该领域取得进展有赖于对大脑活动中的功能进行测量,以及对情绪加工中诸成分,如感觉解码、情绪分类和情绪传染等进行有效的分离。在功能测量方面,task-fMRI有着极强的优势,它可以通过观察受试者在加工任务时所产生的血氧水平变化来反映受试者在加工该任务时大脑中的活跃区域,从而来达到对大脑特定功能加工区域的观察目的。但是,task-fMRI实验中也存在着相当多的噪声影响,除去静息态也会面对的头动噪声和机器噪声外,情绪识别类的任务对被试的心理生理状况(如心跳)和眼动状况(如瞳孔大小变化)会产生额外的噪声影响,因此,对这部分信息进行收集并将其考虑进统计模型中,对于数据的精细解释是有必要的。

    03

    eLIFE:脑电结合眼动研究:自闭症儿童社交脑网络的早期改变

    社交障碍是自闭症谱系障碍(ASD,Autism Spectrum Disorders)的标志,但是在ASD研究中缺乏针对社交性刺激引起早期社交脑网络改变的证据。我们记录了ASD学步儿童及其正常发育(TD, typically developing)的同伴在探索动态社交场景时的注视方式和大脑活动。基于电信号溯源的定向功能连接分析,揭示了theta和alpha频率的特定频率非典型脑网络。结果发现,与自闭症相关的社交网络的关键节点信息在传输和连接方式均发生了变化。对ASD脑与行为关系的分析表明,来自背顶额叶,颞下叶和岛状皮层区域的补偿机制与较少的非典型注视模式和较低的临床障碍有关。本结果提供了有力的证据表明:社交脑网络的定向功能连接改变是ASD大脑早期非典型发育的核心组成部分。

    02

    基于VPP的第4层高密度可扩展负载均衡器

    背景:自2006年起,构建运行于x86核心的软件型第4层负载均衡器(LB)的努力便已展开。此类LB以虚拟机形式部署,也应用于裸金属实现。超大规模云服务提供商(CSP)已在裸金属上开发出成本更低、易于部署和扩展的解决方案。CSP利用这些LB优化内部基础设施,并将其出售给订阅用户用于租赁实例。其中一种解决方案由谷歌开发并开源,名为MAGLEV,是一款云网络LB。MAGLEV是一款针对超大规模部署设计的通用LB,采用独特的加速技术提升性能。雅虎日本基于FD.io VPP开发了一款优化LB,并添加功能以实现LB即服务(LBaaS)的规模扩展。该实现使用4个核心即可达到10 Gbps的线速。现有的开源软件LB对当前用户存在性能与可扩展性限制,通常每个核心仅限约100万个并发连接和约200万包每秒(Mpps)的吞吐量。终端用户已投入大量资源试图克服以下局限,但尚未达到理想性能水平:

    01

    入选USENIX ATC 2024|腾讯TQUIC团队最新研究 QDSR:更快更均衡的QUIC流量分发

    其中,腾讯云架构平台部应用框架组TQUIC(https://github.com/Tencent/tquic)团队结合长期的开发和实践经验, 并与南方科技大学李清老师开展前沿研究探索,提出了一种更高效的QUIC流量转发框架QDSR。高动态内容请求和不断增长的下行中继转发服务使得7层QUIC转发工作负载过大,导致运营成本上升和端到端服务质量下降。为了解决这一问题,QDSR采用了QUIC和直接服务器返回(Direct Server Return,DSR)技术,使得真实服务器能够同时直接向客户端发送数据,消除了传统七层过重的冗余中继转发。因此,QDSR不仅仅实现了高性能、低延迟,并且几乎消除了额外的下行链路中继开销,为云服务提供商提供了一种创新且高效的解决方案。此项论文受到了USENIX ATC 2024高度认可并被录用。

    01

    Nature子刊:工作记忆训练期间的功能脑网络动态重构

    大脑的功能网络不断适应变化的环境需求。与任务相关的功能网络架构的行为自动化的结果仍然远未被理解。我们调查了当参与者掌握双n-back任务时行为自动化的神经反映。在四次功能磁共振成像扫描中,我们评估了大脑网络模块性,这是生物系统适应的基础。我们发现,在双n-back任务的两种条件下,全脑模块性都稳步增加。在一个动态分析中,我们发现默认模式系统的自主性和任务积极系统之间的整合被训练调节。通过训练实现n-back任务的自动化导致额顶叶和默认模式系统之间的整合以及与皮层下系统的整合发生非线性变化。我们的研究结果表明,认知要求任务的自动化可能导致更隔离的网络组织。

    03

    Cerebral Cortex:注意缺陷多动障碍ADHD多层网络动态重构分析

    注意缺陷多动障碍(ADHD)已被报道存在异常的脑网络拓扑结构。然而,这些研究往往将大脑视为一个静态的整体结构,而忽略了动态特性。在这里,我们研究了ADHD患者的动态网络重构如何不同于健康人群。具体来说,我们从包括40名ADHD患者和50名健康人的公共数据集中获得了静息状态功能性磁共振成像数据。提出了一种时变多层网络模型和招募与整合度量来描述群体差异。结果表明,ADHD患者在各水平上的综合得分均显著低于对照组。除了全脑水平外,招募得分低于健康人。值得注意的是,注意缺陷多动障碍患者的皮层下网络和丘脑在功能网络内部和之间都表现出联盟偏好的降低。此外,我们还发现招募系数和整合系数在部分脑区与症状严重程度存在显著相关性。我们的研究结果表明,ADHD患者在某些功能网络内部或之间的沟通能力受到损害。这些证据为研究ADHD的脑网络特征提供了新的契机。

    04

    从时间变异性角度看睡眠剥夺后的异常动态功能连接

    睡眠剥夺(SD)在现代社会非常普遍,被认为是几种临床疾病的潜在因果机制。先前的神经影像学研究已经利用磁共振成像(MRI)从静态(比较两个MRI会话[一个在SD后和一个在休息清醒后])和动态(在SD的一个晚上重复MRI)的角度探索了SD的神经机制。最近的研究主要集中在静息状态扫描时的动态脑功能组织。本研究采用一种已成功应用于许多临床疾病的新指标(时间变异性)来检测55名正常青年受试者SD后的动态功能连接。我们发现,睡眠不足的受试者在大范围的大脑区域表现出区域水平的时间变异性增加,而在几个丘脑亚区域表现出区域水平的时间变异性减少。SD后,参与者在默认模式网络(DMN)中表现出更强的网络内时间变异性,在许多子网对中表现出更强的网络间时间变异性。通过逐步回归分析发现,视觉网络和DMN之间的网络间时间变异性与精神运动者警觉测验最慢的10%反应速度呈负相关。综上所述,我们的研究结果表明,睡眠不足的受试者表现出异常的脑功能动态结构,这为研究睡眠不足的神经基础提供了新的见解,有助于我们理解临床障碍的病理生理机制。

    00
    领券