首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

双12恶意样本智能识别推荐

双12期间,随着线上交易的激增,恶意样本的数量也可能随之上升。为了有效应对这一问题,智能识别推荐系统显得尤为重要。以下是对该系统的全面解析:

基础概念

恶意样本智能识别推荐系统是一种利用机器学习和大数据分析技术,自动检测并识别出潜在恶意行为或攻击的样本,并根据这些识别结果为用户提供相应的防护建议或解决方案的系统。

相关优势

  1. 高效性:能够迅速处理大量数据,实时识别恶意样本。
  2. 准确性:通过不断学习和优化算法,提高识别精度。
  3. 自动化:减少人工干预,降低误报和漏报率。
  4. 可扩展性:适应不同规模和复杂度的安全需求。

类型与应用场景

类型

  • 基于规则的识别:设定特定规则来检测已知恶意行为。
  • 基于行为的识别:分析用户行为模式,识别异常行为。
  • 基于机器学习的识别:运用算法模型自动学习并识别新型恶意样本。

应用场景

  • 电商网站防护:保护交易安全,防止欺诈行为。
  • 金融服务安全:确保资金流动的安全性。
  • 社交媒体监控:预防恶意信息和账号滥用。
  • 企业网络安全:防御内部和外部的网络攻击。

遇到问题及解决方法

问题一:识别准确率不高

原因:可能是由于训练数据不足或质量不高,导致模型泛化能力有限。

解决方法

  • 收集更多高质量的训练样本。
  • 使用数据增强技术扩充数据集。
  • 定期更新和优化模型参数。

问题二:系统响应速度慢

原因:可能是计算资源分配不足或算法效率低下。

解决方法

  • 升级硬件设施,增加计算资源。
  • 优化算法逻辑,减少不必要的计算步骤。
  • 利用分布式计算提升处理能力。

问题三:误报率较高

原因:可能是由于模型过于敏感或未能充分理解正常行为模式。

解决方法

  • 调整模型阈值,降低敏感度。
  • 引入更多上下文信息辅助判断。
  • 结合人工审核机制进行二次确认。

示例代码(Python)

以下是一个简单的基于机器学习的恶意样本识别示例,使用Scikit-learn库构建一个随机森林分类器:

代码语言:txt
复制
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

# 加载数据集
data = pd.read_csv('malicious_samples.csv')

# 划分特征与标签
X = data.drop('label', axis=1)
y = data['label']

# 划分训练集与测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集结果
y_pred = clf.predict(X_test)

# 输出准确率
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')

在实际应用中,还需根据具体业务场景和数据特点进行细致调整和优化。同时,结合腾讯云的相关安全产品和服务,如Web应用防火墙(WAF)和云安全中心,能进一步提升整体防护效果。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

首次揭秘双11双12背后的云数据库技术!| Q推荐

从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。...刚刚过去的 2021 年双 11,就有超过 8 亿消费者参与。 与攀升的交易额和参与人数相反,双 11 的主要阵地“淘宝 APP”、双 12 的主要阵地“天猫 APP”的崩溃情况逐年减少近无。...是什么样的数据库撑起了 2021 年的双 11 双 12 的稳定进行?...《数据 Cool 谈》第三期,阿里巴巴大淘宝技术部双 12 队长朱成、阿里巴巴业务平台双 11 队长徐培德、阿里巴巴数据库双 11 队长陈锦赋与 InfoQ 主编王一鹏,一同揭秘了双 11 双 12 背后的数据库技术...在双 11 双 12,这种方式的弊端会被进一步放大。数据显示,在双 11 秒杀系统中,秒杀峰值交易数据每秒超过 50 万笔,是一个非常典型的电商秒杀场景。

31.8K50

健康码行程码智能识别方案解析,双码识别一步到位

而这一审查的流程相当复杂且消耗人力,我们以学校审核为例: 时间紧:8点-10点,家长提交健康码/行程码,10点-12点老师进行审查,且必须在12点前完成审查。...任务重:不仅需确认学生健康码,对同住人如父母、兄弟姐妹等人双码信息也需审核确认。...基于EasyDL的 健康码行程码智能识别 让我们来拆解一下究竟需要审查健康码/行程码哪些信息?...针对双码的混合图像需要使用飞桨EasyDL图像分类进行区分。 综上所述,整体解决方案需要三个环节,如下图所示: 基于EasyDL的整体解决方案 对于支持整个项目而言,需要很长时间的上下游处理。...标注格式需要注意 值得提及的是,双码智能识别依赖于EasyDL多样化的功能 图像分类:可以将双码分类与颜色检测结合 物体检测:可以增加类别、以检测代替分类 文字识别:识别多种字体的文字和数字 在这一过程中可以发现飞桨

3.6K30
  • 阅读推荐:容易被忽略的12册人工智能书籍

    本文整理12册容易被忽略的人工智能书籍,有经典入门内容、有理论加深内容,现在大家都很关注怎样能够更快做出结果,往往忽略了一些基础内容,这些书籍,希望各位“闲暇”时,可以“阅读”一番。...02 Multiagent Systems多智能体和分布式人工智能领域的经典教科书。...11 Pattern Recognition And Machine Learning学习经典的机器学习与模式识别方法是研究先进人工智能算法的基础。...这本经典的模式识别与机器学习原理书,从数理统计角度解释经典模型的统计学实质,可以作为机器学习理论的基础和工具书籍。...12 Convex Optimization(凸优化)凸优化在数学规划领域具有非常重要的地位。

    1K70

    01.AI双非研0如何从事AI安全研究

    博友提问:AI双非研0,很好奇怎么把安全应用到AI上,可以推荐些入门的东西吗?对这个方向很感兴趣,以及双非搞AI有前途吗? 作者回答:你好!...(区块链)、对抗样本等都会和AI结合,不论是否是双非、211、985还是企业,了解一定AI安全相关的知识是有必要的,比如Fuzzing、漏洞挖掘、恶意代码分析、代码解混淆、入侵检测等。...比如说系统安全的恶意代码分析、逆向工程都要掌握好,以及如何提取样本的CFG特征或API特征;再如漏洞扫描基本方法,angr、符号执行、污点分析、BP(业务漏洞)基本工具的用法,以及掌握基本挖漏洞的逻辑,...,并进行有效的语义提取和特征表征增强,更好地实现恶意性识别、家族分类或溯源,AI结合安全的研究大概流程就是这样(样本采集->预处理->特征提取->向量表征->模型构建->优化评估)。...当然也推荐看作者“当人工智能遇到安全”的基础文章和“网络攻防和AI安全之家”知识星球。 (4)建议初学者一方面要学会复现别人的AI安全代码,一定要动手动手,另一方面可以通过简单的案例或数据集进行入门。

    18111

    4.基于机器学习的恶意代码检测技术详解

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。....深度学习静态检测举例 6.优缺点 7.静态分析和动态分析对比 三.机器学习算法在工业界的应用 四.总结 前文推荐: [当人工智能遇上安全] 1.人工智能真的安全吗?...浙大团队分享AI对抗样本技术 [当人工智能遇上安全] 2.清华张超老师 GreyOne和Fuzzing漏洞挖掘各阶段进展总结 [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享...(3)性能评估 下面是衡量机器学习模型的性能指标,首先是一幅混淆矩阵的图表,真实类别中1代表恶意样本,0代表非恶意样本,预测类别也包括1和0,然后结果分为: TP:本身是恶意样本,并且预测识别为恶意样本...FP:本身是恶意样本,然而预测识别为非恶意样本,这是误分类的情况 FN:本身是非恶意样本,然而预测识别为恶意样本,这是误分类的情况 TN:本身是非恶意样本,并且预测识别为非恶意样本 然后是Accuracy

    1.3K30

    机器学习在安全攻防场景的应用与分析

    机器学习能够深入挖掘大数据价值,被广泛用于电影推荐、饮食及产品购买推荐等各方面。Amazon、Facebook 与Google等众多公司也已用机器学习来改进其产品及服务。...该模型可识别异常用户盗号、LBS/加好友、欺诈等行为。随着样本增加,恶意请求的uin、类型、发生时间通过分析端通过线下人工分析和线上打击,达到良好的检测效果。...安全攻防应用案例:无线网络攻击——伪基站短信识别[12] 为了解决“犯罪分子通过冒充10086、95533等机构发送短信来获得用户的账号、密码和身份证等信息”这一问题。...2015年12月,360手机在全球率先推出了伪基站垃圾、诈骗短信精准识别功能。...,因此恶意访问、攻击样本的不充分,导致模型训练后的检测准确率有待提高。

    8.5K80

    对抗样本原理分析

    本文以全连接神经网络为例来介绍对抗样本对人工智能模型作用的本质。...在图像分类、语音识别等模式识别任务中,机器学习的准确率甚至超越了人类。 人工智能技术具有改变人类命运的巨大潜能,但同样存在巨大的安全风险。...随后越来越多的研究发现,除了DNN模型之外,对抗样本同样能成功地攻击强化学习模型、循环神经网络(RNN)模型等不同的机器学习模型,以及语音识别、图像识别、文本处理、恶意软件检测等不同的深度学习应用系统。...本文以全连接神经网络为例来介绍对抗样本对人工智能模型作用的本质。 二、对抗样本简介 神经网络是目前人工智能系统中应用最广泛的一种模型,是一种典型的监督学习模型。...3双半月数据集的二分类问题 前面通过等高线分布图说明了对抗样本的作用机理。下面针对更加复杂的数据集来进一步展示。本节对双半月形数据集进行二分类。数据集和神经网络的等高线图分别如图6和图7所示。 ?

    1.4K10

    什么是AI防火墙(AIFW)?

    AI防火墙引入智能检测引擎,通过海量样本训练威胁检测模型并不断根据实时流量数据优化模型,从而提升了威胁检测能力。 为什么需要AI防火墙?...NGFW与AI防火墙主要能力对比 AI防火墙的主要优势在于“智能”,不再单纯依赖既定签名特征机械识别已经认识的威胁,而是通过大量样本和算法训练威胁检测模型,从而使防火墙可以自主检测高级未知威胁。...智能检测引擎中的检测模型主要有2种来源: 云端样本训练(监督学习) 在云端采用监督学习的方式对百万级数量的样本进行训练,提取威胁检测模型,然后将模型下发到防火墙执行检测。...监督学习与非监督学习可以更有效地检测频繁变种的恶意文件,发现失陷主机和被远程控制的肉鸡,监测数据加密外发窃取,识别慢速和分布式暴力破解等恶意行为。...AI防火墙采用智能恶意文件检测算法提取文件特征,而并非传统的规则库检测恶意文件,极大提升了检出率。

    14800

    7.基于机器学习的安全数据集总结

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。...内容类型:图像样本 使用范围:图像分类、恶意家族分类 推荐理由:个人感觉这是图像分类实验的基础,恶意样本转换灰度图进行恶意家族分类实验也都可以基于此实验拓展 下载地址:https://github.com...推荐作者文章: 图像分类原理及基于KNN、朴素贝叶斯算法的图像分类案例 MNIST-手写数字 MNIST数据集 是手写体识别数据集,也是入门级的计算机视觉数据集。...内容类型:图像样本 使用范围:图像分类、恶意家族分类 推荐理由:个人感觉这是图像分类实验的基础,恶意样本转换灰度图进行恶意家族分类实验也都可以基于此实验拓展。...发布机构:麻省理工学院 内容类型:图像样本 数据大小:31.2GB 使用范围:图像分类、自然灾害识别 推荐理由:个人感觉该数据集对于对抗样本、AI和安全结合的案例有帮助 下载地址:https://hyper.ai

    1.9K20

    3.安全领域中的机器学习及机器学习恶意请求识别案例分享

    《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。...5.完整代码 四.总结 前文推荐: [当人工智能遇上安全] 1.人工智能真的安全吗?...浙大团队分享AI对抗样本技术 [当人工智能遇上安全] 2.清华张超老师 GreyOne和Fuzzing漏洞挖掘各阶段进展总结 [当人工智能遇上安全] 3.安全领域中的机器学习及机器学习恶意请求识别案例分享...2015年12月,360手机在全球率先推出了伪基站垃圾、诈骗短信精准识别功能。...一步一个脚印前行,接下来希望通过深度学习实现更多的恶意代码识别和对抗样本。

    1.8K30

    人工智能网络安全?请再认真点!

    一直没找到人工智能是怎么跟恶意加密流量对抗的。直到看到最后一段。终于看到“人工智能”这四个字了! ? 图5 人工智能与恶意加密流量的对抗 看过这段文字之后,终于明白了标题二所要表述的内容。...图6 人工智能可以与恶意加密流量对抗 这是一段即没有量化,又没有逻辑的废话。“人工智能算法赋予机器以专家的智慧”这是要换头吗?...并且模型的拟合度极高,6万多样本仅1次就能达到95%以上的正确率。这样的模型可以用于网络中的加密流量识别。我只能惊叹一下,加密流量的特征好明显啊,用个屁的人工智能。 下面的模型更是雷,如图12所示。...图12 模型训练2 管中窥豹,以上截图至少说明了以下结论: 能在CPU上跑可以推断模型非常的小。 训练所需次数少,可以推断数据的维度非常低,数据样本非常少。...少量的样本数据,低维的特征提取,最终只能出来个玩具模型。 准确率基于的是已提供样本识别率,并非现网流量识别率,这个在文中无从衡量。 这样就敢说实现xxx种协议的识别,准确率达到99%。

    1K10

    AI被攻击者滥用后,是人工智能还是“人工智障”?

    一份由学术界、社会团体以及行业人士所撰写的报告《人工智能的恶意使用(Malicious Use of Artificial Intelligence)》指出,任何科技都有其双面性,在大力发展AI技术的时候...在这种干扰下,原本精确的人工智能,瞬间就沦为“人工智障”。 试想如果有人恶意制造这样的对抗样本去挑战我们身边的AI系统,结果会有多可怕呢?...未来,AI技术或将从恶意软件的自动化攻击,进化为自动化决策,即能够根据被感染系统的参数进行智能调整、自我繁殖,攻击会变得更加静默和危险。...一旦进入到受感染的系统中,恶意软件还能够安全地学习系统的环境知识,比如受感染设备通信的内部设备,使用的端口和协议,以及账户信息等。因此,由智能化带来的威胁程度也将成倍增加。...基于现状,企业能做的有两点: 一是密切关注该领域的发展动向,加大AI网络安全的投入力度;二是做好针对此类攻击的风险控制,采用业界推荐的安全最佳实践。

    1.1K10

    AISecOps - XAIGen技术解析:模型知识抽取促进模型可信任

    该分类器可基于决策树、循环神经网络等机器学习或深度学习模型构建,以完成在识别恶意流量等文本分类任务。...进一步,根据采样恶意流量载荷,进行字节级别的聚类,以将恶意流量中的扫描流量识别出来:扫描流量指包含同质载荷内容的流量集合,在聚类过程中将形成聚类簇。...本文使用Levenshtein距离[12]计算字符串的相似度,使用基于密度的DBSCAN算法[13]完成聚类操作,通过指定最大距离参数、最少样本数参数等控制聚类效果,以避免显式指定聚类簇个数。...在检测模型识别该载荷内容为webshell的情况下,使用LIME算法能够得到模型将该载荷样本识别为恶意webshell的关键词及其贡献程度的置信度值。...评估数据集(评估集)包含当前批次恶意流量载荷样本(采样率βm),以及正常样本(可与感知阶段检测模型使用相同训练数据集,采样率βn-his),以及与当前批次恶意流量在同一时间窗口内的正常样本(采样率βn-cur

    1.1K30

    【论文推荐】最新5篇语音识别(ASR)相关论文—音频对抗样本、对抗性语音识别系统、声学模型、序列到序列、口语可理解性矫正

    【导读】专知内容组整理了最近五篇语音识别(Automatic Speech Recognition, ASR)相关文章,为大家进行介绍,欢迎查看! 1....Audio Adversarial Examples: Targeted Attacks on Speech-to-Text(音频对抗样本:针对语音到文本的攻击) ---- ---- 作者:Nicholas...CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition(CommanderSong: 一种实用的对抗性语音识别系统...State-of-the-art Speech Recognition With Sequence-to-Sequence Models(采用序列到序列模型的前沿语音识别方法) ---- ---- 作者...On a 12,500 hour voice search task, we find that the proposed changes improve the WER of the LAS system

    2.8K40

    利用AI逃避规则,黑客的舞台又出神技!

    该研究团队实地演示了一项实验,他们将与APT28黑客组织关联的知名恶意软件STEELHOOK样本及其对应的YARA规则输入到一款强大的AI语言模型中,请求模型修改源代码以实现躲避检测,同时确保软件的基本恶意功能得以保留且生成的新代码逻辑无误...攻击者利用深度学习等技术,生成逼真的电子邮件、消息或网站,诱使用户泄露个人信息或下载恶意软件。人工智能已经开始使网络钓鱼攻击变得更加有效。...虽然许多网络钓鱼攻击会发送大量欺诈消息,希望少数攻击能够成功,但人工智能可以极大地提高网络犯罪分子发起鱼叉式网络钓鱼攻击的能力。...这些攻击利用人工智能筛选大量数据来制作定制的网络钓鱼消息,其成功率比标准的大规模网络钓鱼攻击高得多。识别AI网络钓鱼攻击识别AI网络钓鱼攻击是防范的第一步。...强化身份验证:在涉及敏感信息的操作中,启用双因素身份验证,增加账户安全等级。谨慎分享个人信息:不在不安全的网络环境中分享个人敏感信息,尤其是身份证号、银行账户信息等。

    22310

    如何用Transformer分清12位女排运动员?这个「时空双路」框架刷群体行为识别SOTA

    群体行为识别(Group Activity Recognition)不同于寻常的关于个体动作的行为识别(Action Recognition),需要通过分析视频中所有参与群体活动的个体之间的关系,进一步结合场景信息...以下面排球比赛视频为例,算法需要分析场上12位运动员的动作、交互以及场景内容,综合判断得到场上在进行左侧击球(left-spike)群体行为。 ‍...图4 全监督提供12位运动员的精细标注 为了进一步减少标注成本,也为了检验模型的鲁棒性,文章提出有限数据设定(limited data),验证模型在有限标注数据(如50%)下的表现;同时,文章也在弱监督设定...重点从事深度学习与计算机视觉、模式识别与机器学习等人工智能前沿研究。...近5年申请30项发明专利,授权发明专利8项,通过横向项目转移给华为、腾讯等龙头人工智能公司9项。

    2.1K40

    学界 | Ian Goodfellow和Papernot半年三篇博文,对机器学习的安全隐私来了个大起底

    AI 科技评论刚刚给大家介绍了最新两篇,一篇是他推荐的论文「Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong...今天的设计者们应当开始设计的系统,需要在面对恶意用户和面对基于机器学习的恶意敌对方的时候还能正常工作。 举例说明,一个人工智能系统在训练时(学习阶段)或者在进行预测时(推理阶段)都有可能被攻击者盯上。...比如垃圾邮件会把自己伪装成正常邮件的样子,造成垃圾邮件识别器的误识别。 可用性:系统的可用性也可以成为攻击目标。...比如假设莫里亚蒂教授要给福尔摩斯栽赃一个罪名,他就可以让一个没被怀疑的同伙送给福尔摩斯一双独特、华丽的靴子。...比如下面这张图,用机器学习模型识别最左侧的图像,可以正确识别出来这是一只熊猫。但是对这张图像增加了中间所示的噪声之后得到的右侧图像,就会被模型识别成一只长臂猿(而且置信度还非常高)。 ?

    1.3K120

    如何用Transformer分清12位女排运动员?这个「时空双路」框架刷群体行为识别SOTA

    群体行为识别(Group Activity Recognition)不同于寻常的关于个体动作的行为识别(Action Recognition),需要通过分析视频中所有参与群体活动的个体之间的关系,进一步结合场景信息...以下面排球比赛视频为例,算法需要分析场上12位运动员的动作、交互以及场景内容,综合判断得到场上在进行左侧击球(left-spike)群体行为。 ‍...图4 全监督提供12位运动员的精细标注 为了进一步减少标注成本,也为了检验模型的鲁棒性,文章提出有限数据设定(limited data),验证模型在有限标注数据(如50%)下的表现;同时,文章也在弱监督设定...重点从事深度学习与计算机视觉、模式识别与机器学习等人工智能前沿研究。...近5年申请30项发明专利,授权发明专利8项,通过横向项目转移给华为、腾讯等龙头人工智能公司9项。

    2K40
    领券