比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息...,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。...本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。...值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。...举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。
ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力
基于Bert进行实体识别任务微调 所需要的pip包 pandas numpy sklearn pytorch transformers: https://github.com/...torch import cuda device = 'cuda' if cuda.is_available() else 'cpu' print(device) cuda 数据处理 比赛数据下载地址:商品标题实体识别
---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。...通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。...同时,还配套提供货架拼接、翻拍识别、空位识别、商品陈列层数识别、商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型
利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。...在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。...目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。...但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的...本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。
人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。...当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。...今天,图酱就跟大家科普应用在无人店、新零售中的商品识别技术。...研究组,则要克服各种疑难杂症,比如容易产生褶皱的软包装、商品侧面和背面的识别、遮挡和反光环境下的识别等等。 ? 目前,在实际生产环境下,已经达到95%以上的识别准确率。...人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。
比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。...其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页...文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。
作者 | 康洪雨 单位 | 有赞科技 整理 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别出商品的一些属性标签,包括不限于品牌、颜色、领型、适用人群、尺码等等...▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。...主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑...而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。...多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。
"商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。...当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装...,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。...其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息...未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。
商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ?...说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ?...我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。...需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。...在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。
适用基于主流模型架构衍生开发的各类应用,如人脸识别、ADAS、商品识别、疲劳检测等。RK3399具有高性能、高扩展、全能型应用特性。...相关应用提供加速支持,具备四大优势特性: 1、兼容性广:标准API,直接支持基于Android NNAPI开发的各类APK应用; 2、通用性强:可支持众多主流模型架构,适用于基于主流模型架构衍生开发的各类应用,包括人脸识别...、ADAS、商品识别、疲劳检测等; 3、性能飙升:在多项任务中可以取得实时性能,如采用MobileNet进行图像识别最高帧率达23.2帧; 4、功耗更低:基于GPU高效计算,满负荷功耗仅1W; 根据瑞芯微...Rockchip官方提供的图像识别及目标检测的APK测试数据来看,主流模型性能表现优异: ?...AI计算正处于爆发增长期,瑞芯微人工智能芯片已广泛应用于图像识别、智能安防、智能驾驶、语音识别、消费类电子等领域。
虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。相比之下,智能货柜等相对封闭且SKU数量有限的场景,可能更适合这项技术的落地。...其中,应用最广泛的人脸识别几乎已经渗透到了我们生活的方方面面,包括根据用户年龄和长相推荐商品、刷脸支付、人脸抓逃等等。车辆识别技术也已经在交通卡口、停车场、收费站等场景相继落地。...于是他开始思考能否让图片直接链接到商品,用户拍摄照片或上传图片,就可自动识别图片中的鞋子、包、衣服等商品,并显示商品购买链接。...在做了货架陈列分析等尝试之后,戴剑彬意识到,虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。...戴剑彬介绍,G-BOX二代采用的仍然是静态识别方案。他表示,虽然理论上动态识别具有非常多的优势,比如空间利用率更高、对商品摆放的限制更少,但实施起来也非常困难。
通过标识解析来识别当前生产的产品,从而调用相应的加工程序实现柔性制造,通过识别零部件上的一维、二维码,从而实现上万个零部件防伪、纠错,一次下线合格率上升2个百分点。...而标识解析技术的一物一码溯源防伪功能,可以有效识别假冒伪类产品识别,保证产品质量安全可靠。 在工业互联网的基础共性支撑技术——标识解析的推进上,忽米网走在行业前列。
当然,Amazon Go用到的核心技术不止是图像识别,更不止于商品识别。...二、商品识别的技术难点 1.人脸识别难还是商品识别难 首先这个问题不是很科学,任何一个问题都可以变得容易,也可以很难。人脸识别一般是比较配合的,像第一个图,相对来说难度会比较低,现在方案也比较成熟。...像下图中的重叠,我们目前能够识别,但如果出现一个商品比较长,另一个商品完全覆盖把商品截成两段,人可以通过联想知道是同一个商品,但是机器会识别为两个商品。...再比如说商店的排面,上图左上角的牛奶只露出了不到1/20,商品识别很可能会出错,所以这不能只依靠商品识别来做。人会通过推理来判别,那么商品识别中也许可以增加近似的技术手段来优化整个方案。...RP2K是品览基于零售商品识别能力发布的零售数据集。
图像识别作为深度学习算法的主流实践应用方向,早已在生活的各个领域发挥作用,如安全检查和身份核验时的人脸识别、无人货架和智能零售柜中的商品识别,这些任务背后的关键技术都在于此。...图1 PP-ShiTu应用于商品识别效果示意(开发者应用展示) 然而实现理想的识别效果并不是一件简单的事: 针对海量数据问题而言,如何实现一个通用的方法在不同的数据集中都有很好的表征能力?...PP-ShiTu核心技术解读 针对以上技术难点,PaddleClas推出的通用图像识别系统PP-ShiTu均可以完美解决,它不仅有高水平的特征学习能力,对新出现的类别也可以在不用重新训练算法的情况下,直接通过配置检索库的方式实现识别...核心功能点如下: 升级版PP-ShiTu大小仅18M,完美支持移动端需求 支持基于C++的服务化部署,部署效率大幅提升 支持移动端Paddle Lite部署教程,手机上也能轻松实现图像识别 图6 手机识别效果展示...华东理工大学的高材生颜鑫,也是飞桨领航团的团长,带领团队基于PP-ShiTu开发了一套智能购物平台系统:通过图像即可精准识别顾客购买的商品,并返回完整的购物清单及应付价格,为智能货柜提供了非常好的视觉化解决方案
前提: 因为在商品详情页面中有个一功能是点击分享生成海报,海报上面有商品信息以及商品小程序码,用户通过将海报分享给别人的时候,那个人可以通过识别那个商品小程序码进入该商品详情页。...首先,要生成带参数的二维码,然后你把这个二维码放到海报上,canvas绘制海报的方法在我之前的博文里已经写过,不清楚的可以翻看一下: // 获取海报商品二维码 getQCoder: function...content-type': 'application/x-www-form-urlencoded' }, success: (res) => { //从res中获取海报商品二维码... }, }) }, url:是后台小伙伴给你提供的路径 data:page是通过识别小程序码进入的那个页面路径;scene是小程序码带的参数 scene参数不能有参数名,只能直接写值... productId: productId, spikeId: spikeId }) } } 最后,使用小程序开发工具中 编译状态下的 "通过二维码编译" 识别小程序码测试是否获取到参数
我们来想象一下,利用上文提及的手机APP或是智能硬件中所包含的地图,顾客只需利用语音识别技术在其中输入商品类型甚至具体到商品名称,其中的语音助手便会以语音的形式进行导航。...当顾客决定购买之时,只需按下货架上的指纹识别按钮(指纹、人脸等相关信息在顾客进来之时已经同步到手机APP或智能硬件之中),随后,仓库中的机器人便会根据生成的订单为顾客准备商品。...在这过程中,顾客的订单已经上传至后台,利用人脸识别技术,在顾客出门的那一瞬间,超市将从顾客的账户中扣除相关资金。...分析大数据,让超市运作更为高效、人性化 对于超市而言,如何吸引顾客永远是一个问题,当前,超市多是通过打折优惠活动来获得顾客的光顾。的确,“打折优惠”是一个很好的途径,但并不能够从根本上解决问题。...在实际应用中,根据以往顾客的购物数据或是网络浏览数据,超市可以在分析获知顾客的购物喜好,从而利用移动设备对顾客进行推荐,包括优惠活动或是新产品等等,从而吸引顾客前往超市。
最后,作为联合举办单位,码隆科技首席科学家黄伟林博士总结,在多年从事商品识别的研究和实践过程中,面临的三个主要难点。首先,细粒度商品识别,特别是对 SKU 级别的识别是至关重要的。...其次,除了细粒度分析,SKU 级别的商品识别通常需要识别大量的商品种类,比如超过 10 万类,而常见的 ImageNet 物体识别通常只有 1,000 类。...这是商品识别的另一个挑战,而常用的单层 softmax 分类模型很难解决。 这就需要引进多层级联的细粒度分类算法,从而加大细粒度识别的难度。...因此,如何有效地利用海量网络爬去的商品图片,在没有或者只有少量人工标注和清洗的情况下,训练一个高性能的商品识别模型,成为一个关键的技术。...此次 FGVC5 挑战赛是现实应用场景问题促进算法探究的一次实践,从数据集数量到参赛团队规模都上升到新的台阶,这也说明商品识别这类细粒度识别问题正在引起更多学者、技术从业者关注。
---- 【新智元导读】近日,国际模式识别大会(ICPR 2020)拉开帷幕,各个workshop也公布了各项挑战赛的结果,来自中国的DeepBlueAI 团队斩获了由ICPR 2020、Kaggle...和JDAI等联合举办大规模商品图像识别挑战赛冠军。...为了充分满足客户海量、多样化的网上购物需求,人工智能零售系统需要快速地从图像和视频中自动识别出产品的存货单元(Stock Keeping Unit,SKU)级别的类别,然而,许多SKU级别的产品都是细粒度的...JDAI构建了一个名为Products-10K[1]的产品识别数据集,这是迄今为止最大的一个产品识别数据集,其中包含了约10000种经常被中国消费者购买的产品,涵盖了时尚、3C、食品、保健、家居用品等全品类...总结 DeepBlueAI团队针对大规模细粒度商品图像识别任务,通过数据分析、数据增强、网络结构设计以及loss改进等设计了一个简单的细粒度图像识别算法。
领取专属 10元无门槛券
手把手带您无忧上云