展开

关键词

商品标题实体识别

比赛链接 https://www.heywhale.com/home/competition/620b34ed28270b0017b823ad/content/3 1 赛题背景 京东商品标题包含了商品的大量关键信息 ,商品标题实体识别是NLP应用中的一项核心基础任务,能为多种下游场景所复用,从标题文本中准确抽取出商品相关实体能够提升检索、推荐等业务场景下的用户体验和平台效率。 本赛题要求选手使用模型抽取出商品标题文本中的实体。 与传统的实体抽取不同,京东商品标题文本的实体密度高、实体粒度细,赛题具有特色性。 值得注意的是实体不仅仅与实体词有关,而且与当前标题所售卖商品有关。 举例说明,一个售卖产品为手机壳的商品标题中出现的“iPhone13”与售卖产品为手机的商品标题中出现的“iPhone13”为不同的实体标签。

32020

Python开发---试用OCR文字识别API

AI如今发展迅速,各云厂商对通用的人脸识别,文字识别,语音识别和语音合成提供了接口。在日常中有些小场景还是可以用到这些通用AI接口使平台或软件锦上添花的。 比如身份管理。 (截图里的身份证照片和信息来源于网上公开,并且已经被模糊处理) image.png image.png 使用百度AI提供的身份证识别接口,同时使用它供演示的身份证照片。 image.png image.png 当我们在浏览器上传过身份证照片后,同时调用百度AI的身份证识别接口返回身份证记录各字段信息,然后检查无误后,再添加识别结果到数据库。 百度云网站上提供有多种语言版本的示例代码,分为两步:根据自己的API Key和Secret Key调用鉴权接口获取token,然后用token和图片的base64数据去调用身份证识别接口。

60630
  • 广告
    关闭

    腾讯云服务器买赠活动

    腾讯云服务器买赠活动,低至72元1年,买就送,最长续3个月,买2核送4核、买4核送8核

  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    同款商品识别的克星--ArcFace!

    ArcFace: Additive Angular Margin Loss for Deep Face Recognition(CVPR2019) 简 介 利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 背 景 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 ArcFace相较于Triplet-Loss有更好的margin; 小结 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力

    56910

    NER | 商品标题属性识别探索与实践

    ---- ©作者 | 康洪雨 单位 | 有赞科技 研究方向 | NLP/推荐算法 来自 | PaperWeekly 最近一段时间在做商品理解的工作,主要内容是从商品标题里识别商品的一些属性标签,包括不限于品牌 ▲ 商品理解示例,品牌:佳丰;口味:蒜香味 本文主要记录下做这个任务上遇到的问题,踩的坑,模型的效果等。 主要内容: 怎么构建命名实体识别(NER)任务的标注数据 BertCRF 训练单标签识别过程及踩坑 BertCRF 训练超多标签识别过程及踩坑 CascadeBertCRF 训练超多标签识别过程及踩坑 而且抽出的字一般都是标题前 1、2 个字,这与商品品牌一般都在标题前面有关。 多标签样本是指一个标题中包含多个标签,比如下面这个商品包含 5 个标签。

    12520

    智慧零售商品识别系统方案解析,15分钟上手商品识别AI模型

    2 基于EasyDL零售版的商品识别方案 将终端数据转化为数字资产 百度飞桨EasyDL零售版,针对快消零售业提供专业版服务,实现了低成本、高精度获取商品图像识别模型,完成智能化的店内陈列与费用核销。 通过 EasyDL 零售版,可以训练包含但不限于本品 SKU、竞品 SKU、POSM 助销物料、价签与价格等识别对象。 同时,还配套提供货架拼接、翻拍识别、空位识别商品陈列层数识别商品陈列场景识别等通用能力,从业务实际需求出发,有效获取网点真实商品分销和陈列数据,推动实时预警、及时跟进的市场策略落地,帮助快消品牌商顺利完成经营模式的数字化转型

    8310

    【深度学习】同款商品识别的克星--ArcFace!

    利用深度卷积神经网络(DCNNs)进行大规模人脸识别特征学习的一大挑战是设计合适的损失函数以提高识别能力。 在本文中,我们提出了一个附加的角Margin损失(ArcFace)来获得高分辨的人脸识别特征。由于与超球面上的测地距离精确对应,所提出的弧面具有清晰的几何解释。 目前训练人脸识别的DCNN方案主要有两种: 训练一个多分类器,它可以将训练集合中的不同实体分开; 训练embeddings,例如triplet loss。 但是softmax的loss和triplet loss都存在一些缺点, 对于softmax来说: 线性转化矩阵和是线性相关的; 学习得到的特征对于闭集分类问题是可分离的,而对于开集人脸识别问题,学习到的特征是不可分辨的 本文提出了一种Additive Angular Margin Loss ,该函数能有效地提高DCNNs学习的特征嵌入在人脸识别中的判别能力。

    21540

    快消品图像识别丨无人店背后的商品识别技术

    人脸识别已经逐渐渗透我们的日常生活,机器能够认准人脸,想必大家都有所耳闻;而另一类计算机视觉的应用,是进行商品识别。 当前新兴的一些无人零售店,背后就需要机器对商品进行自动识别,拍图购物、AR互动营销等场景,也运用了商品识别技术。 今天,图酱就跟大家科普应用在无人店、新零售中的商品识别技术。 研究组,则要克服各种疑难杂症,比如容易产生褶皱的软包装、商品侧面和背面的识别、遮挡和反光环境下的识别等等。 ? 目前,在实际生产环境下,已经达到95%以上的识别准确率。 人脸都有眼睛、鼻子、嘴巴等固定的特征,而超市中琳琅满目的商品,则千奇百态。与人脸识别相比,商品识别有更高的工程复杂度。

    1.9K70

    iOS身份证识别(免费试用,内附 demo)

    网上很多资源,识别率低,速度慢,用户体验很差。今天我就和大家介绍一下我使用的方法,可以快速、高效的识别中国身份证信息。

    57510

    芒果TV商品意图识别top3思路分享

    比赛简介 主办方提供了商品名称和用户query数据供选手进行模型训练,希望选手能够设计出一套高效、精准的商品意图识别模型,以帮助提升电商搜索的效果,改善顾客的购买体验。 其中提供了两份数据,一个是goods_data.csv是商品名称数据,一个是query_data.csv是用户query数据,共39470条 前期我们做的尝试比较多,后面差不多烂尾了,庆幸b榜还在第一页 文本长度统计如下:商品名称数据中 文本字符长度最大为39,最小为6。我们在训练中选择了覆盖绝大部分数据长度的大小26,其余没有做过多尝试。

    10120

    10分钟搭建商品结算平台!商品、车辆识别一网打尽

    "商品识别"、"人脸识别"、"以图搜图"有什么难?这个在 GitHub 上狂圈 Star 3100+ 的项目就能轻松帮你实现! 它就是全开源、轻量级的图像识别系统 PP-ShiTu。 当然不是,一个优秀的图像识别系统往往在处理实际场景问题过程中需要面临各种挑战: 1.商品类别数以万计:根本没法事先把所有类别都放入训练集; 2.不同商品相似度极高:比如同一种饮料的不同口味,就很可能拥有非常类似的包装 ,同时对于商品识别中品类众多、外观相似和更新频繁的痛难点也提供了可参考的示范。 其实商品识别的能力远不仅如此,商超能够通过这项技术进行资产保护,降低运营成本;时尚行业能够通过这项技术,完成对秀场服装的大数据分析,把握时尚潮流;服装行业可以通过商品识别快速匹配产品材质和生产工艺等相关信息 未来,从设计到生产、从物流到销售,AI 商品识别,大有可为! 如果您想详细了解更多飞桨的相关内容,请参阅以下文档。

    19430

    猿设计9——真电商之商品实体识别

    商品系统的设计与构建,从某种程度上来讲,就是围绕SPU和SKU来进行的。但是只有这两个粗浅的概念,并不足以描述一个商品信息,今天,我们一起来聊一聊商品到底有哪些信息,进一步完善商品系统的设计。 ? 说到商品的基本信息,我们不妨回过头来看看商品的发布流程。从页面上去寻找需要持久化的信息,从而达到抽象商品信息的目的。 ? 我们先看商品的基础信息,从页面直观的可以看出,有商品类型、商品名称,以及商品类目属性构成。 需要注意的是商品类型这个属性,考虑到我们构建的是一个B2C的站点,同时还需要兼容多商家2C的设计,那么应该从商品的售卖方去区分商品是属于自营还是第三方。 在编辑商品的时候,一般会要求填写条形码,如果一个商品是有条形码如果存在的话,那么这个条形码会在很多地方用到,比如采购、仓库、出纳,也有利于建立一套标准的商品编码。

    21820

    Python unittest 自动识别并执行测试用例方式

    自动化测试执行的用例有很多,python额测试用例文件,都是以“test”开头的。 TestLoader(defaultTestLoader)是unittest的测试用例加载器,它包括多个加载测试用例的方法。它的结果是返回一个测试套件。 本文介绍discover()用法与功能 结构: discover(start_dir, pattern=’test*.py’, top_level_dir=None) 作用:找到指定目录下所有测试用例模块 ,以test*.py开头,并将查找到的测试用例组装到测试套件中 2)runner.run(discover) :通过run()函数执行discover 补充知识:unittest框架执行测试并发送邮件 discover) fp.close() new_report = new_report(test_report) send_mail(new_report) 以上这篇Python unittest 自动识别并执行测试用例方式就是小编分享给大家的全部内容了

    34120

    澳大利亚机场开始测试用面部识别代替护照

    在悉尼机场旅行的澳洲航空乘客将成为首批在自动登记,行李托运,休息室使用和飞机登机中使用面部识别的旅客群体。 该系统最终将允许机场更快地处理旅行者。 生物识别系统也得到了澳大利亚联邦政府的认可,该政府承诺提供2250万澳元(1660万美元),以确保所有澳大利亚机场都采用面部识别技术。 如果你说“生物识别”和“智能手机解锁”,大多数人根本不会有其他想法,但安全专家警告说,机场试验将被政府部门追踪,这些部门可以在公共场所使用同样的技术。 “(生物识别技术)可以产生真正的伤害”,Bruce Baer Arnold博士在澳大利亚金融评论的一份声明中说。数据透明度在GDPR之后已成为一个越来越大的问题,并且正处于潜在问题所在的领域。 美国正在考虑用于取代传统识别的类似的面部识别技术。美国国土安全部(DHS)已经计划在今年8月推出其车辆面部系统,一项识别进出美国边境的人的计划。

    26230

    瑞芯微发布8.1 NNAPI SDK:可开发人脸识别商品识别,疲劳检测等

    适用基于主流模型架构衍生开发的各类应用,如人脸识别、ADAS、商品识别、疲劳检测等。RK3399具有高性能、高扩展、全能型应用特性。 相关应用提供加速支持,具备四大优势特性: 1、兼容性广:标准API,直接支持基于Android NNAPI开发的各类APK应用; 2、通用性强:可支持众多主流模型架构,适用于基于主流模型架构衍生开发的各类应用,包括人脸识别 、ADAS、商品识别、疲劳检测等; 3、性能飙升:在多项任务中可以取得实时性能,如采用MobileNet进行图像识别最高帧率达23.2帧; 4、功耗更低:基于GPU高效计算,满负荷功耗仅1W; 根据瑞芯微 Rockchip官方提供的图像识别及目标检测的APK测试数据来看,主流模型性能表现优异: ? AI计算正处于爆发增长期,瑞芯微人工智能芯片已广泛应用于图像识别、智能安防、智能驾驶、语音识别、消费类电子等领域。

    1K20

    标识解析解决工业商品未来—防伪追溯、身份识别问题

    通过标识解析来识别当前生产的产品,从而调用相应的加工程序实现柔性制造,通过识别零部件上的一维、二维码,从而实现上万个零部件防伪、纠错,一次下线合格率上升2个百分点。 而标识解析技术的一物一码溯源防伪功能,可以有效识别假冒伪类产品识别,保证产品质量安全可靠。 在工业互联网的基础共性支撑技术——标识解析的推进上,忽米网走在行业前列。

    25400

    为什么商品视觉识别公司最后都去做了智能货柜?

    虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。相比之下,智能货柜等相对封闭且SKU数量有限的场景,可能更适合这项技术的落地。 其中,应用最广泛的人脸识别几乎已经渗透到了我们生活的方方面面,包括根据用户年龄和长相推荐商品、刷脸支付、人脸抓逃等等。车辆识别技术也已经在交通卡口、停车场、收费站等场景相继落地。 于是他开始思考能否让图片直接链接到商品,用户拍摄照片或上传图片,就可自动识别图片中的鞋子、包、衣服等商品,并显示商品购买链接。 在做了货架陈列分析等尝试之后,戴剑彬意识到,虽然商品视觉识别的想象空间很大,但前提是能识别足够多的SKU,而这在当前的技术条件下还很难做到。 戴剑彬介绍,G-BOX二代采用的仍然是静态识别方案。他表示,虽然理论上动态识别具有非常多的优势,比如空间利用率更高、对商品摆放的限制更少,但实施起来也非常困难。

    83510

    LeanCloud试用

    今天午睡前,随便从阅读器里面翻到一本书。讲IOS开发的,看了一小会儿感觉还不错。准备小记一下,折腾到哪里算哪里~

    23350

    试用grafana

    本文把这几天简单试用的情况做个小结。

    56010

    相关产品

    • 内容识别

      内容识别

      内容识别(CR)是由腾讯云数据万象提供的内容识别和理解能力。其集成腾讯云 AI 的多种强大功能,对腾讯云对象存储的数据提供图片标签、人脸智能裁剪、语音识别、人脸特效等增值服务,广泛应用于电商网站、社交软件等多种场景,方便用户对图片进行内容管理。

    相关资讯

    热门标签

    活动推荐

    扫码关注腾讯云开发者

    领取腾讯云代金券