首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像检测

是一种计算机视觉领域的技术,旨在识别和定位图像中的特定对象或物体。它是人工智能和机器学习的一个重要应用领域,可以应用于许多实际场景,如自动驾驶、安防监控、医学影像分析等。

图像检测可以分为两个主要步骤:目标检测和目标定位。目标检测是指在图像中确定是否存在特定对象,而目标定位则是确定对象在图像中的位置。

在图像检测中,常用的算法包括传统的基于特征工程的方法和基于深度学习的方法。传统方法通常使用手工设计的特征和分类器来进行目标检测,如Haar特征和级联分类器。而深度学习方法则通过神经网络自动学习特征和分类器,如卷积神经网络(CNN)和区域卷积神经网络(R-CNN)。

腾讯云提供了一系列与图像检测相关的产品和服务,包括:

  1. 人脸识别(https://cloud.tencent.com/product/fr):基于深度学习的人脸检测和识别技术,可应用于人脸验证、人脸搜索等场景。
  2. 图像标签(https://cloud.tencent.com/product/ft):通过自然语言处理技术,为图像自动添加标签,方便图像的分类和搜索。
  3. 图像审核(https://cloud.tencent.com/product/img):基于深度学习的图像内容审核技术,可用于识别和过滤不良内容,保护用户安全。
  4. 视觉搜索(https://cloud.tencent.com/product/vs):通过图像相似度计算,实现基于图像的搜索和推荐功能。

腾讯云的图像检测产品具有高效、准确、安全的特点,可以帮助开发者快速构建图像检测应用,并提供了丰富的API和SDK供开发者使用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Generative Modeling for Small-Data Object Detection

本文探讨了小数据模式下的目标检测,由于数据稀有和注释费用的原因,只有有限数量的注释边界框可用。这是当今的一个常见挑战,因为机器学习被应用于许多新任务,在这些任务中,获得训练数据更具挑战性,例如在医生一生中有时只看到一次罕见疾病的医学图像中。在这项工作中,我们从生成建模的角度探讨了这个问题,方法是学习生成具有相关边界框的新图像,并将其用于训练目标检测器。我们表明,简单地训练先前提出的生成模型并不能产生令人满意的性能,因为它们是为了图像真实性而不是目标检测精度而优化的。为此,我们开发了一种具有新型展开机制的新模型,该机制联合优化生成模型和检测器,以使生成的图像提高检测器的性能。 我们表明,该方法在疾病检测和小数据行人检测这两个具有挑战性的数据集上优于现有技术,将NIH胸部X射线的平均精度提高了20%,定位精度提高了50%。

02
  • Let There Be Light: Improved Traffic Surveillancevia Detail Preserving Night-to-Day Transfer

    近年来,在深度卷积神经网络(CNNs)的帮助下,图像和视频监控在智能交通系统(ITS)方面取得了长足的进步。作为最先进的感知方法之一,检测视频监控每帧中感兴趣的目标是ITS广泛期望的。目前,在具有良好照明条件的日间场景等标准场景中,物体检测显示出显著的效率和可靠性。然而,在夜间等不利条件下,物体检测的准确性会显著下降。该问题的主要原因之一是缺乏足够的夜间场景注释检测数据集。在本文中,我们提出了一个框架,通过使用图像翻译方法来缓解在不利条件下进行目标检测时精度下降的情况。 为了缓解生成对抗性网络(GANs)造成的细节破坏,我们建议利用基于核预测网络(KPN)的方法来重新定义夜间到日间的图像翻译。KPN网络与目标检测任务一起训练,以使训练的日间模型直接适应夜间车辆检测。车辆检测实验验证了该方法的准确性和有效性。

    02

    Improved Traffic Surveillance via Detail Preserving

    近年来,在深度卷积神经网络(CNNs)的帮助下,图像和视频监控在智能交通系统(ITS)中取得了长足的进展。 作为一种先进的感知方法,智能交通系统对视频监控中每一帧感兴趣的目标进行检测是其广泛的研究方向。 目前,在照明条件良好的白天场景等标准场景中,目标检测显示出了显著的效率和可靠性。 然而,在夜间等不利条件下,目标检测的准确性明显下降。 造成这一问题的主要原因之一是缺乏足够的夜间场景标注检测数据集。 本文提出了一种基于图像平移的目标检测框架,以解决在不利条件下目标检测精度下降的问题。 我们提出利用基于风格翻译的StyleMix方法获取白天图像和夜间图像对,作为夜间图像到日间图像转换的训练数据。 为了减少生成对抗网络(GANs)带来的细节破坏,我们提出了基于核预测网络(KPN)的方法来细化夜间到白天的图像翻译。 KPN网络与目标检测任务一起训练,使训练好的白天模型直接适应夜间车辆检测。 车辆检测实验验证了该方法的准确性和有效性。

    01

    Thermal Object Detection using Domain Adaptation through

    最近发生的一起自动驾驶车辆致命事故引发了一场关于在自动驾驶传感器套件中使用红外技术以提高鲁棒目标检测可见性的辩论。与激光雷达、雷达和照相机相比,热成像具有探测红外光谱中物体发出的热差的优点。相比之下,激光雷达和相机捕捉在可见光谱,和不利的天气条件可以影响其准确性。热成像可以满足传统成像传感器对图像中目标检测的局限性。提出了一种用于热图像目标检测的区域自适应方法。我们探讨了领域适应的多种概念。首先,利用生成式对抗网络,通过风格一致性将低层特征从可见光谱域转移到红外光谱域。其次,通过转换训练好的可见光光谱模型,采用具有风格一致性的跨域模型进行红外光谱中的目标检测。提出的策略在公开可利用的热图像数据集(FLIR ADAS和KAIST多光谱)上进行评估。我们发现,通过域适应将源域的低层特征适应到目标域,平均平均精度提高了约10%。

    01

    Cycle-object consistency for image-to-image domain adaptation

    生成对抗性网络(GANs)的最新进展已被证明可以通过数据扩充有效地执行目标检测器的域自适应。虽然GANs非常成功,但那些能够在图像到图像的翻译任务中很好地保存目标的方法通常需要辅助任务,例如语义分割,以防止图像内容过于失真。然而,在实践中很难获得像素级注释。或者,实例感知图像转换模型分别处理对象实例和背景。然而,它在测试时需要目标检测器,假设现成的检测器在这两个领域都能很好地工作。在这项工作中,我们介绍了AugGAN Det,它引入了循环目标一致性(CoCo)损失,以生成跨复杂域的实例感知翻译图像。 目标域的目标检测器直接用于生成器训练,并引导翻译图像中保留的目标携带目标域外观。与之前的模型(例如,需要像素级语义分割来强制潜在分布保持对象)相比,这项工作只需要更容易获取的边界框注释。接下来,对于感知实例的GAN模型,我们的模型AugGAN-Det在没有明确对齐实例特征的情况下内化了全局和对象样式转移。最重要的是,在测试时不需要检测器。实验结果表明,我们的模型优于最近的目标保持和实例级模型,并实现了最先进的检测精度和视觉感知质量。

    01

    MATLAB实现工业PCB电路板缺陷识别和检测

    PCB(PrintedCircuitBoard印刷电路板)是电子产品中众多电子元器件的承载体,它为各电子元器件的秩序连接提供了可能,PCB已成为现代电子产品的核心部分。随着现代电子工业迅猛发展,电子技术不断革新,PCB密集度不断增大,层级越来越多,生产中因焊接缺陷的等各种原因,导致电路板的合格率降低影响整机质量的事故屡见不鲜。随着印刷电路板的精度、集成度、复杂度、以及数量的不断提高,PCB板的缺陷检测已成为整个电子行业中重要的检测内容。其中人工目测等传统的PCB缺陷检测技术因诸多弊端已经不能适应现代工业生产水平的要求,因此开发和应用新的检测方法已显得尤为重要。

    02

    基于深度学习的遥感图像地物变化检测综述

    遥感(Remote Sensing,缩写为RS)是指非接触式、远距离的探测技术。遥感技术通常使用航空航天平台、按照特定的波段对地球或其他天体进行成像观测,通过分析观测数据,探测地球或其他天体资源与环境。遥感技术在现代化社会中十分重要,它能够在一定程度上体现一个国家的经济实力和科技水平,故一直受到世界大国的高度重视。自从美国的陆地卫星Landat-1和法国的SPOT-1卫星相继升空,世界进入了高分辨率遥感技术发展和应用的新时代。2001年,美国发射的QuickBird卫星可采集分辨率为0.61m/像素的全彩色图像和2.44m/像素的多光谱图像,标志着世界进入“亚米级”高空间分辨率[2]遥感时代。在20世纪80年代后,我国遥感技术也进入飞速发展时期。风云气象卫星和资源系列卫星的成功发射为我国卫星遥感事业的发展奠定了坚实的基础。2006年到2016年间,我国陆续将遥感卫星一号到遥感卫星三十号共30个卫星送入太空,这些卫星在我国国土资源普及、防灾减灾等领域发挥了重要的作用。2013年到2018年间,我国相继将高分一号到高分六号等高分辨率卫星送入太空,其在国土统计、城市规划、路网设计、农作物估计和抗灾救援等领域取得了突出的成就。

    02

    Object Detection in Optical Remote Sensing Images: A Survey and A New Benchmark

    最近已作出大量努力,提出光学遥感图像中的各种目标检测方法。然而,目前对光学遥感图像中目标检测的数据集调查和基于深度学习的方法还不够完善。此外,现有的数据集大多存在一些不足之处,如图像和目标类别数量较少,图像多样性和变异性不足。这些局限性极大地影响了基于深度学习的目标检测方法的发展。本文综述了近年来计算机视觉和地球观测领域基于深度学习的目标检测研究进展。然后,我们提出了一个大规模、公开可用的光学遥感图像目标检测基准,我们将其命名为DIOR。数据集包含23463张图像和190288个实例,覆盖20个目标类。建议的DIOR数据集1)在目标类别、目标实例数量和总图像数量上都是大规模的;2)具有大范围的对象尺寸变化,不仅在空间分辨率方面,而且在跨目标的类间和类内尺寸变化方面;3)由于成像条件、天气、季节、成像质量的不同,成像结果差异较大;4)具有较高的类间相似性和类内多样性。提出的基准可以帮助研究人员开发和验证他们的数据驱动方法。最后,我们评估了DIOR数据集中的几种最先进的方法,为未来的研究奠定了基础。

    05

    【AAAI 2018】多种注意力机制互补完成VQA(视觉问答),清华大学、中国香港中文大学等团队最新工作

    【导读】近日,针对VQA领域中不同注意力机制(如基于自由区域的注意力和基于检测的注意力)各有利弊的现状,来自清华大学、香港中文大学和华东师范大学的学者发表论文提出一个新的VQA深度神经网络,它集成了两种注意力机制。本文提出的框架通过多模态特征相乘嵌入方案有效地融合了自由图像区域、检测框和问题表示,来共同参与问题相关的自由图像区域和检测框上的注意力计算,以实现更精确的问答。所提出的方法在两个公开的数据集COCO-QA和VQA上进行了大量的评估,并且胜过了最先进的方法。这篇文章被AAAI2018接收,代码已开源

    04

    Cross-Domain Car Detection Using UnsupervisedImage-to-Image Translation: From Day to Night

    深度学习技术使最先进的模型得以出现,以解决对象检测任务。然而,这些技术是数据驱动的,将准确性委托给训练数据集,训练数据集必须与目标任务中的图像相似。数据集的获取涉及注释图像,这是一个艰巨而昂贵的过程,通常需要时间和手动操作。因此,当应用程序的目标域没有可用的注释数据集时,就会出现一个具有挑战性的场景,使得在这种情况下的任务依赖于不同域的训练数据集。共享这个问题,物体检测是自动驾驶汽车的一项重要任务,在自动驾驶汽车中,大量的驾驶场景产生了几个应用领域,需要为训练过程提供注释数据。在这项工作中,提出了一种使用来自源域(白天图像)的注释数据训练汽车检测系统的方法,而不需要目标域(夜间图像)的图像注释。 为此,探索了一个基于生成对抗网络(GANs)的模型,以实现生成具有相应注释的人工数据集。人工数据集(假数据集)是将图像从白天时域转换到晚上时域而创建的。伪数据集仅包括目标域的注释图像(夜间图像),然后用于训练汽车检测器模型。实验结果表明,所提出的方法实现了显著和一致的改进,包括与仅使用可用注释数据(即日图像)的训练相比,检测性能提高了10%以上。

    02

    GAN-Based Day-to-Night Image Style Transfer forNighttime Vehicle Detection

    数据增强在训练基于CNN的检测器中起着至关重要的作用。以前的大多数方法都是基于使用通用图像处理操作的组合,并且只能产生有限的看似合理的图像变化。最近,基于生成对抗性网络的方法已经显示出令人信服的视觉结果。然而,当面临大而复杂的领域变化时,例如从白天到晚上,它们很容易在保留图像对象和保持翻译一致性方面失败。在本文中,我们提出了AugGAN,这是一种基于GAN的数据增强器,它可以将道路行驶图像转换到所需的域,同时可以很好地保留图像对象。这项工作的贡献有三个方面:(1)我们设计了一个结构感知的未配对图像到图像的翻译网络,该网络学习跨不同域的潜在数据转换,同时大大减少了转换图像中的伪影; 2) 我们定量地证明了车辆检测器的域自适应能力不受其训练数据的限制;(3) 在车辆检测方面,我们的目标保护网络在日夜困难的情况下提供了显著的性能增益。与跨领域的不同道路图像翻译任务的竞争方法相比,AugGAN可以生成更具视觉合理性的图像。此外,我们通过使用转换结果生成的数据集训练Faster R-CNN和YOLO来定量评估不同的方法,并通过使用所提出的AugGAN模型证明了目标检测精度的显著提高。

    02

    手把手教你实现图象边缘检测!

    一、边缘检测的概念 边缘检测是图像处理与计算机视觉中极为重要的一种分析图像的方法,至少在我做图像分析与识别时,边缘是我最喜欢的图像特征。边缘检测的目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来往往是轮廓。如果图像中边缘能够精确的测量和定位,那么,就意味着实际的物体能够被定位和测量,包括物体的面积、物体的直径、物体的形状等就能被测量。在对现实世界的图像采集中,有下面4种情况会表现在图像中时形成一个边缘。 深度的不连续(物体处在不同的物平面上); 表面方向的不连续(如正方体的不同的两个面); 物体材

    07
    领券