首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

秒杀】二、what?秒杀也可以做引擎

从上次在技术交流群里聊到秒杀系统的设计,到目前为止已经招募到8位对其非常感兴趣的小伙伴,主笔编码。经过大家的讨论,感觉除了做成一个秒杀的demo,我们还可以更近一步,将其做成一个秒杀引擎。...【秒杀】一、系统设计要点,从卖病鹅说起 一个黑盒 最主要的思路,就是把秒杀引擎看成是一个黑盒,对完成秒杀的逻辑进行屏蔽。一端输入,一端输出。...也就是说,你把要秒杀的数据,经过清洗倒入秒杀引擎后,剩下的就没原来系统的什么事了。 “精致秒杀引擎,云加速,弹性可伸缩高可用架构。SLA全年5个9,绿色无公害,为您的业务保驾护航。...它拥有一个在秒杀引擎中唯一的名字:targetID,用来标识是哪一种商品。非常非常多的个性化配置参数,就在这里,比如秒杀开始时间,队列长度,是否懒加载商品等。...目标 秒杀引擎会用到各种各样的技术,我们手到拈来,但是也需要一种方式进行分享。配合教程+源码的方式,会有更好的效果。

1.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2023开放原子全球开源峰会,蚂蚁计算平台开源业内首个工业级流计算引擎

    在高峰论坛上,蚂蚁技术研究院院长、计算负责人陈文光宣布开源 TuGraph 计算平台核心成员——工业级流式计算引擎 TuGraph Analytics。...计算目前已广泛应用在金融、政务、医疗等领域,备受全球研发机构和顶尖科技公司关注。流式计算是一种将流式计算计算结合的交叉创新,融合了流式计算的高度实效性和计算的灵活性,攻坚难度极高。...据了解,蚂蚁从2015年开始探索计算,布局了数据库、流式计算引擎学习等相关技术,打造了世界规模领先的计算集群,于业界首创了工业级流式计算引擎,多次问鼎数据库行业权威测试 LDBC 世界冠军并保持世界纪录...此次开源的工业级流式计算引擎是蚂蚁从2017年开始布局打造,经过五年多工业级应用大考,流式计算做到了在千亿数据规模的“”上秒级延迟计算,是蚂蚁风控的核心基础技术,成功解决了金融场景风险分析难、识别率低...此次流式计算引擎开源,是延续蚂蚁开源核心基础技术的实际动作,希望通过开放成熟的计算技术,服务更广阔的数字化产业,向世界输出中国科技公司的前沿技术影响力。

    25120

    蚂蚁金服, 开源业内首个工业级流计算引擎

    在高峰论坛上,蚂蚁技术研究院院长、计算负责人陈文光宣布开源 TuGraph 计算平台核心成员——工业级流式计算引擎 TuGraph Analytics。...(:陈文光宣布开源业内首个工业级流式计算引擎 TuGraph Analytics) 去年9月,蚂蚁集团开源了 TuGraph 计算平台中的数据库 TuGraph DB。...据了解,蚂蚁从2015年开始探索计算,布局了数据库、流式计算引擎学习等相关技术,打造了世界规模领先的计算集群,于业界首创了工业级流式计算引擎,多次问鼎数据库行业权威测试 LDBC 世界冠军并保持世界纪录...此次开源的工业级流式计算引擎是蚂蚁从2017年开始布局打造,经过五年多工业级应用大考,流式计算做到了在千亿数据规模的“”上秒级延迟计算,是蚂蚁风控的核心基础技术,成功解决了金融场景风险分析难、识别率低...此次流式计算引擎开源,是延续蚂蚁开源核心基础技术的实际动作,希望通过开放成熟的计算技术,服务更广阔的数字化产业,向世界输出中国科技公司的前沿技术影响力。

    30130

    计算 on nLive:Nebula 的计算实践

    计算之 nebula-plato [计算 on nLive:Nebula 的计算实践] nebula-plato 的分享主要由计算系统概述、Gemini 计算系统介绍、Plato 计算系统介绍以及...计算系统 的划分 [计算 on nLive:Nebula 的计算实践] 计算系统概述部分,着重讲解下图的划分、分片、存储方式等内容。...[计算 on nLive:Nebula 的计算实践] (:以顶点为中心的编程模型) [计算 on nLive:Nebula 的计算实践] (:以边为中心的编程模型) 这两种模式以顶点为中心的编程模型比较常见...Gemini 计算系统 Gemini 计算系统是以计算为中心的分布式计算系统,这里主要说下它的特点: CSR/CSC 稀疏/稠密 push/pull master/mirror 计算/通信 协同工作...Nebula 计算 [计算 on nLive:Nebula 的计算实践] 目前 Nebula 计算集成了两种不同计算框架,共有 2 款产品:nebula-algorithm 和 nebula-plato

    1.5K40

    OLAP计算引擎怎么选?

    大家好,我是一哥,今天聊一聊OLAP技术,一哥认为好的OLAP引擎应该具备以下三个条件:易开发、易维护、易移植。...今天给大家分享一下常见的几种OLAP计算引擎,他们的特性、适用场景,优缺点等,希望对大家在选型应用上有帮助。 Kylin ?...简介 1、Presto是一个开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。...2、是一个分布式,大规模并行处理(MPP)数据库引擎,包括运行在CDH集群主机上的不同后台进程。 3、Impala主要由Impalad, State Store和CLI组成。 ?...Kylin在如何快速求得预计算结果,以及优化查询解析使得更多的查询能用上预计算结果方面在优化,后续Kylin的版本会优化预计算速度,使得Kylin可以变成一个近似实时的分析引擎

    2.1K30

    动态计算

    Pytorch底层最核心的概念是张量,动态计算以及自动微分。 本节我们将介绍 Pytorch的动态计算。...包括: 动态计算简介 计算图中的Function 计算和反向传播 叶子节点和非叶子节点 计算在TensorBoard中的可视化 一,动态计算简介 ?...Pytorch的计算由节点和边组成,节点表示张量或者Function,边表示张量和Function之间的依赖关系。 Pytorch中的计算是动态。这里的动态主要有两重含义。...第一层含义是:计算的正向传播是立即执行的。无需等待完整的计算创建完毕,每条语句都会在计算图中动态添加节点和边,并立即执行正向传播得到计算结果。 第二层含义是:计算在反向传播后立即销毁。...下次调用需要重新构建计算

    1.8K30

    大数据高速计算引擎Spark

    第一部分 Spark Core 第1节 Spark概述 1.1 什么是Spark Spark 是一个快速、通用的计算引擎。Spark的特点: 速度快。...Spark实现了高效的DAG执行引擎,可以通过基于内 存来高效处理数据流; 使用简单。...Spark可以用于批处理、交互式查询 (Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和计算 (GraphX)。...1.2 Spark 与 Hadoop 从狭义的角度上看:Hadoop是一个分布式框架,由存储、资源调度、计算三部分组 成; Spark是一个分布式计算引擎,由 Scala 语言编写的计算框架,基于内存的快速...,也可以支持SQL即席查询、实时流式计算、机器学习 和计算等 Spark 在资源管理器YARN之上,提供一站式的大数据解决方案 Spark 为什么比 MapReduce 快: 1 Spark

    85720

    流式计算引擎-Storm、Spark Streaming

    目前常用的流式实时计算引擎分为两类:面向行和面向微批处理,其中面向行的流式实时计算引擎的代表是Apache Storm,典型特点是延迟低,但吞吐率也低。...而面向微批处理的流式实时计算引擎代表是Spark Streaming,其典型特点是延迟高,但吞吐率也高。...比如:Storm和Spark Streaming 4、结果存储:将计算结果存储到外部系统,比如:大量可实时查询的系统,可存储Hbase中,小量但需要可高并发查询系统,可存储Redis。...MapReduce的job,由一系列Spout和Blot构成的DAG 4、Spout:Stream的数据源 5、Bolt:消息处理逻辑 基本架构: 1、Nimbus:集群的管理和调度组件 2、Supervisor:计算组件...Spark Streaming: 基本概念:核心思想是把流式处理转化为“微批处理”,即以时间为单位切分数据流,每个切片内的数据对应一个RDD,进而采用Spark引擎进行快速计算

    2.4K20

    落地百余场景、扛过双11,蚂蚁TuGraph流式计算引擎正式开源!

    行业首个工业级流式计算引擎 TuGraph-Analytics,与目前世界范围内有记录的、最快的数据库开源项目 TuGraph DB 来自于一家中国企业,这不仅仅解决了国产基础软件领域的一大难题,健全了开源生态...本次,蚂蚁集团宣布将计算系统中的流计算引擎 TuGraph-Analytics 正式开源。结合蚂蚁计算领域其他项目的优异表现,该引擎又将对开源领域及产业界带来哪些价值?...对于数据模型天然适合模型,同时希望能够更快看到计算的价值的应用,流计算引擎 TuGraph-Analytics 是更加合适的选择。...于是他们将流的能力从两边延伸提供了离在线一体化的能力,使得用户可以基于一套 DSL 支持基于离线的数据进行实验,并在随后的时间内针对计算框架、存储引擎等做了持续性优化,这些工作未来也都将通过开源的方式贡献给社区...TuGraph-Analytics 作为流式计算引擎,偏重于流式实时的分析和计算

    37440

    回炉重造:计算

    有的,那就是我们需要说的计算 计算 我们借用「」的结构就能很好的表示整个前向和后向的过程。形式如下 ? 我们再来看一个更具体的例子 ? (这幅摘自Paddle教程。...白色是卷积核每次移动覆盖的区域,而蓝色区块,则是与权重W1经过计算的位置 可以看到W1分别和1, 2, 5, 6这四个数字进行计算 我们最后标准化一下 这就是权重W1对应的梯度,以此类推,我们可以得到...因此池化层需要将梯度传递到前面一层,而自身是不需要计算梯度优化参数。...静态 在tf1时代,其运行机制是静态,也就是「符号式编程」,tensorflow也是按照上面计算的思想,把整个运算逻辑抽象成一张「数据流」 ?...在静态图里我们可以优化到同一层级,乘法和加法同时做到 总结 这篇文章讲解了计算的提出,框架内部常见算子的反向传播方法,以及动静态的主要区别。

    2.8K20

    数据引擎助力车娱融合新业态 让秒杀狂欢更从容

    由于直播信号通常比现场信号晚一分钟,当前面主持人在说三二一秒杀开始后,后台其实只有一分钟的准备时间。...每一次秒杀开始或红包开始时,监控大屏中的几条线就会随着参与人数和互动次数的增加呈现断崖式的波动。...而随着秒杀的车越来越贵,越靠后系统所承受的波峰也越高。相对于汽车之家平时的业务,晚会经历的流量翻了十倍都不止,对整个系统的压力不言而喻。...跨中心的 TiFlash MPP 架构,为大屏近实时展示助力总次数、秒杀和摇奖的每轮参与用户等信息提供了强有力的支撑。...而在此过程中的经验和思考,也会加速企业日常的业务创新节奏,提升技术驱动的创新效率,打造增长新引擎

    10.7K10

    的排序计算和传播计算

    图片的排序计算一种流行的拓扑排序算法是Kahn算法,具体步骤如下:统计每个顶点的入度(即有多少个顶点指向该顶点)。将入度为0的顶点加入到一个队列中。...处理有环的拓扑排序问题:如果一个图存在环,那么无法进行拓扑排序。在Kahn算法中,如果最后还存在入度不为0的顶点,那么说明图中存在环。...的传播计算一种常见的传播模型是SIR模型,该模型描述了病毒传播的过程。下面是对SIR模型的简要介绍:SIR模型SIR模型将一个图表示为一个网络,网络中的节点代表个体,边表示节点之间的联系。...预测信息在网络中的传播路径可以基于以下的算法:广度优先搜索 (BFS):该算法从某个指定的节点出发,在图中逐级扩展搜索,以找到特定节点或满足特定条件的节点。...DFS通常比BFS更适用于探索的整个结构,而不仅仅是在最短路径上进行搜索。PageRank算法:PageRank算法是一种将节点排名按照重要性进行排序的算法。

    29961

    的社区计算和嵌入计算

    图片的社区计算社区发现是指在一个图中,将节点分割成若干个互不相交的子集,使得子集内节点之间的连接更加密集,而子集之间的连接较为稀疏。...以上是一种用于发现社区的算法,但并不是唯一的方法,还有许多其他的社区发现算法可以应用于不同的情况和结构。的嵌入计算嵌入是将一个映射到低维空间中的过程。...MDS可以用于对的邻接矩阵计算节点的向量表示。局部线性嵌入(LLE):LLE是一种非线性降维方法,它通过将每个节点表示为其邻居节点的线性组合的方式来进行降维。...Isomap可以用于计算图中节点的向量表示。图卷积神经网络(GCN):GCN是一种基于深度学习的嵌入方法,它通过在每个节点上应用卷积操作来学习节点的向量表示。...注意力网络(GAT):GAT是一种使用注意力机制的嵌入方法,它能够自适应地学习每个节点与其邻居节点之间的关系。GAT可以通过多层注意力操作来计算节点的向量表示。

    33192

    AI Talk | AI工业质检之以引擎

    今天一篇“AI工业质检之以引擎”带大家如何解决工业漏检问题,如何回溯漏检历史现场。...以引擎就是以这样背景情况设计出来,终极目的回溯漏检历史现场。...关键区域与图像模板匹配:上述讲到根据点位设计可以达到目标图像筛选,从而减少搜量,节省时间,但是传统matchTemplate算法对全计算还是耗时极大,为了缩短耗时,以支持人工框选关键位置,根据框选的关键区域进行对比可以提升十几倍甚至上百倍性能...,核心思路:搜索图片与目标图片通过黄金模板矫正得到中心偏移坐标,根据偏移坐标计算人工框选的关键区域坐标,使关键区域换算后的坐标在相应图像上的相对位置尽量相同,以便达到关键区域高效比对。...在每一个位置,都进行一次度量计算,来判断该像素对应的原图像的特定区域 与模板图像的相似度。 3.对于模板T覆盖在I上的每个位置,把上一步计算的度量值保存在结果图像矩阵R中。

    1.5K31

    AI Talk | AI工业质检之以引擎

    今天一篇“AI工业质检之以引擎”带大家如何解决工业漏检问题,如何回溯漏检历史现场。...以引擎就是以这样背景情况设计出来,终极目的回溯漏检历史现场。...引擎设计流程结构图上述 目标图像筛选:工业产品90%都是多角度成像,利用多角度成像实现产品2维化平面检测,多角度通常称多点位设计,成像严格按照点位设计固定拍摄,无论机台复制多少实例,成像都使用一套点位黄金模板...关键区域与图像模板匹配:上述讲到根据点位设计可以达到目标图像筛选,从而减少搜量,节省时间,但是传统matchTemplate算法对全计算还是耗时极大,为了缩短耗时,以支持人工框选关键位置,根据框选的关键区域进行对比可以提升十几倍甚至上百倍性能...在每一个位置,都进行一次度量计算,来判断该像素对应的原图像的特定区域 与模板图像的相似度。 3.对于模板T覆盖在I上的每个位置,把上一步计算的度量值保存在结果图像矩阵R中。

    90420
    领券