首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

numpy中的掩码数组

numpy中有一个掩码数组的概念,需要通过子模块numpy.ma来创建,基本的创建方式如下 >>> import numpy as np >>> import numpy.ma as ma >>> a...上述代码中,掩藏了数组的前3个元素,形成了一个新的掩码数组,在该掩码数组中,被掩藏的前3位用短横杠表示,对原始数组和对应的掩码数组同时求最小值,可以看到,掩码数组中只有未被掩藏的元素参与了计算。...掩码数组赋予了我们重新选择元素的权利,而不用改变矩阵的维度。...在可视化领域,最典型的应用就是绘制三角热图,代码如下 import matplotlib.pyplot as plt import numpy as np import numpy.ma as ma...在numpy.ma子模块中,还提供了多种创建掩码数组的方式,用法如下 >>> import numpy.ma as ma >>> a array([0, 1, 2, 3, 4]) # 等于2的元素被掩盖

1.9K20

python笔记之NUMPY中的掩码数组numpy.ma.mask

参考链接: Python中的numpy.asmatrix python科学计算_numpy_线性代数/掩码数组/内存映射数组   1....,计算的是这两个数组对应下标元素的乘积和,即:内积;对于二维数组,计算的是两个数组的矩阵乘积;对于多维数组,结>果数组中的每个元素都是:数组a最后一维上的所有元素与数组b倒数第二维>上的所有元素的乘积和...()传入两个参数数组,a为N*N的二维数组,b为长度为N的一维数组,满足 : a * x = b,解得x矩阵即是N元一次方程的解;   np.linalg.lstsq()传入的参数数组不要求a数组为正方形...掩码数组   numpy.ma模块中提供掩码数组的处理,这个模块中几乎完整复制了numpy中的所有函数,并提供掩码数组的功能;   一个掩码数组由一个正常数组和一个布尔数组组成,布尔数组中值为True的...>元素表示正常数组中对应下标的值无效,False表示有效;   创建掩码数组:   创建掩码数组:   import numpy.ma as ma x = np.array([1,2,3,5,7,4,3,2,8,0

3.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    刷题打卡:在两个长度相等的排序数组中找到上中位数

    【题目】 给定两个有序数组arr1和arr2,已知两个数组的长度都为N,求两个数组中所有数的上中位数。...【难度】 中 【解答】 这道题可以采用递归来解决,注意,这道题数组是有序的,所以它有如下特点: (1)、当 两个数组的长度为偶数时: 我来举个例子说明他拥有的特点吧。...则数组的长度为 n = 4。 ? 分别选出这两个数组的上中位数的下标,即 mid1 = (n-1)/2 = 1。 mid2 = (n - 1)/2 = 1。 ?...(2)、当两个数组的长度为奇数时: 假定 arr1 = [1, 2,3,4,5],arr2 = [3,4,5,6,7]。则数组的长度为 n = 5。 mid1 = (n-1)/2 = 2。...,把两个数组中较小的数返回去 12 if (l1 >= r1) { 13 return Math.min(arr1[l1], arr2[l2]); 14

    1.1K20

    NumPy基础

    参考链接: Python中的numpy.log1p 文章目录  一、创建数组二、数组操作类型1. 数组属性2. 数组索引:获取单个元素3. 切片4. 数组的变形5....将布尔数组作为掩码    七、花哨索引八、数组的排序 [ NumPy version: 1.18.1 ]  import numpy as np 一、创建数组  # 1.从python列表创建数组 #...如果两个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为1的维度扩展以匹配另外一个数组的形状。如果两个数组的形状在任何一个维度上都不匹配并且没有任何一个维度等于1,那么会引发异常。 ...M数组的形状 # 两个数组同时广播 b = np.arange(3)[:, np.newaxis] a + b         #a,b同时扩展匹配至公共形状 解读:  # 一维数组 + 二维数组 一维数组...:  数组归一化二维函数可视化  六、比较、掩码和布尔逻辑  1.

    1.3K30

    【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

    Numpy主要分为两个核心部分,N维数组对象 Ndarry 和 通用函数对象 Ufunc, (一个数据结构,一个操作的算法)下面是关于NumPy库的各个常用模块中文名称 英文名称...处理结构化数据、数据库操作等 掩码数组 Masked Arrays 在数组中使用掩码标记无效或缺失的数据,进行计算时可以自动忽略掩码元素。...numpy.arange() 根据指定的开始值、结束值和步长创建一个一维数组。 numpy.linspace()在指定的开始值和结束值之间创建一个一维数组,可以指定数组的长度。...numpy.logspace()在指定的开始值和结束值之间以对数刻度创建一个一维数组。...numpy.eye() 创建一个具有对角线为1的二维数组,其他位置为0。

    19000

    【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

    Numpy主要分为两个核心部分,N维数组对象 Ndarry 和 通用函数对象 Ufunc, (一个数据结构,一个操作的算法)下面是关于NumPy库的各个常用模块 中文名称 英文名称 介绍 解决场景 数组对象...处理结构化数据、数据库操作等 掩码数组 Masked Arrays 在数组中使用掩码标记无效或缺失的数据,进行计算时可以自动忽略掩码元素。...下面是一些常见的NumPy数组属性及其说明,我将以Markdown表格的形式呈现给你。 名称 说明 shape 数组的维度,表示每个维度的大小。例如,(3, 4) 表示一个二维数组,有3行和4列。...numpy.arange() 根据指定的开始值、结束值和步长创建一个一维数组。 numpy.linspace() 在指定的开始值和结束值之间创建一个一维数组,可以指定数组的长度。...numpy.logspace() 在指定的开始值和结束值之间以对数刻度创建一个一维数组。 numpy.eye() 创建一个具有对角线为1的二维数组,其他位置为0。

    19110

    数据科学 IPython 笔记本 9.8 比较,掩码和布尔逻辑

    译者:飞龙 协议:CC BY-NC-SA 4.0 本节介绍如何使用布尔掩码,来检查和操作 NumPy 数组中的值。...在 NumPy 中,布尔掩码通常是完成这些类型任务的最有效方法。 示例:统计雨天 想象一下,你有一系列数据表示某一城市一年中每天的降水量。...我们在“NumPy 上的数组计算:通用函数”中看到,NumPy 的ufuncs可用于代替循环,对数组进行快速的逐元素算术运算;以同样的方式,我们可以使用其他ufunc对数组进行逐元素比较,然后我们可以操纵结果来回答我们的问题...作为ufunc的比较运算 在“NumPy 上的数组计算:通用函数”中,我们介绍了ufunc,专注于算术运算符。 我们看到,在数组上使用+,-,*,/和其他,产生了逐元素操作。...使用布尔数组 给定一个布尔数组,你可以执行许多有用的操作。我们将使用x,我们之前创建的二维数组。

    1K10

    数据科学 IPython 笔记本 7.5 数据索引和选择

    在第二章中,我们详细介绍了在 NumPy 数组中访问,设置和修改值的方法和工具。...序列中的数据选择 我们在上一节中看到,Series对象在很多方面都像一维 NumPy 数组,并且在许多方面像标准的 Python 字典。...作为一维数组的序列 Series建立字典式接口上,并通过与 NumPy 数组相同的基本机制,提供数组式的项目选择,即切片,掩码和花式索引。...数据帧中的数据选择 回想一下,DataFrame在很多方面都类似二维或结构化数组,在其它方面莱斯共享相同索引的Series结构的字典。在我们探索此结构中的数据选择时,记住些类比是有帮助的。...作为二维数组的数据帧 如前所述,我们还可以将DataFrame视为扩展的二维数组。

    1.7K20

    Numpy的广播功能

    数组的计算:广播广播的介绍广播的规则广播的实际应用比较,掩码和布尔逻辑比较操作操作布尔数组将布尔数组作为掩码 《Python数据科学手册》读书笔记 数组的计算:广播 另外一种向量化操作的方法是利用 NumPy...如果两个数组的维度数不同,那么小维度数组的形状将会在最左边补1 如果两个数组的形状在任何一个维度都不匹配,那么数组的形状将会沿着维度为1的维度扩展以匹配另外一个数组的形状 如果两个数组的形状在任何一个维度都不匹配并且没有任何一个维度等于...NumPy 提供了一些简明的模式来操作这些布尔结果。 操作布尔数组 给定一个布尔数组, 你可以实现很多有用的操作。...一种更强大的模式是使用布尔数组作为掩码, 通过该掩码选择数据的子数据集。...,对于Numpy布尔数组,后者是最常用的操作

    1.8K20

    MySQL动态hash结构

    这种hash结构实现起来十分简单,事先分配好一个2^n大小的一个数组,然后对键值对2^n取余数,然后把数据根据余数放到相应的数组下标中,如果恰好这个位置元素已经被其他元素占据了,那么就通过一个单链表,来解决键值冲突...实现的重点就在于对一个元素求hash值然后通过一个计算掩码的公式求得这个元素真实的hash数组的位置,在之前那两中hash结构中,这个公式一般是:hash mod 2^n,但是这个动态hash结构的计算掩码的公式是...值,buffmax是2^n,maxlength是当前数组中记录的个数(它就是当前数组的长度,分配的空间),这里通过代码可以看到maxlength介于buffmax/2到buffmax之间。...hash值对buffmax求余的话,如果大于等于records,那么就会折半再去取余数,这个余数和真实余数之间差buffmax/2。...可以看出这个动态hash表在求余数大于等于records的情况下,选择了一种折中的办法,就是把这个hash值通过buffmax/2求得一个临时的hash掩码。

    1.9K70

    绘图精进 | ERA5 弯曲箭头风场图绘制

    u 和 v 应为二维的 NumPy 数组或 NumPy 掩码数组(维度为 ny x nx)。 res=None (可选)一个 Resources 类的实例,包含 PyNGL 资源作为属性。...从版本 1.3.0 开始,如果 u 和/或 v 是掩码数组,则任何等于相应填充值的值将不会被绘制。...如果 u 和/或 v 不是掩码数组且包含缺失值,则应将资源 vfMissingUValueV 和/或 vfMissingVValueV 设置为这些值。...u 和 v:矢量的 U 和 V 分量,必须是二维数组或掩码数组。 res:可选参数,用于设置绘图资源。 输出:返回一个表示矢量图的 PlotId。...如果数据是掩码数组,缺失值将不会被绘制。 如果数据不是掩码数组但包含缺失值,需设置 vfMissingUValueV 和 vfMissingVValueV。

    11610

    Python numpy np.clip() 将数组中的元素限制在指定的最小值和最大值之间

    , out=None, **kwargs) 下面这段示例代码使用了 Python 的 NumPy 库来实现一个简单的功能:将数组中的元素限制在指定的最小值和最大值之间。...具体来说,它首先创建了一个包含 0 到 9(包括 0 和 9)的整数数组,然后使用 np.clip 函数将这个数组中的每个元素限制在 1 到 8 之间。...如果数组中的元素小于 1,则该元素被设置为 1;如果大于 8,则被设置为 8;如果在 1 到 8 之间,则保持不变。...此函数遍历输入数组中的每个元素,将小于 1 的元素替换为 1,将大于 8 的元素替换为 8,而位于 1 和 8 之间的元素保持不变。处理后的新数组被赋值给变量 b。...性能考虑:对于非常大的数组,尤其是在性能敏感场景下使用时,应当注意到任何操作都可能引入显著延迟。因此,在可能情况下预先优化数据结构和算法逻辑。

    27600

    Python可视化.1

    以上两个代码都是可以生成同样的图像 第二个代码对于matlab的使用者来说应该是熟悉的 ? 在文档的开篇,学一个图形构成的元素很有必要 axs是轴的意思,就是在这个语境里面是坐标轴的意思 ?...期望输入一个 数组或者是操作掩码数组 ---- 掩码是啥? 在许多情况下,数据集可能不完整或因无效数据的存在而受到污染。例如,传感器可能无法记录数据或记录无效值。...numpy.ma模块通过引入掩码数组提供了一种解决此问题的便捷方法。 再看一种解释,数据很大形况下是凌乱的,并且含有空白的或者无法处理的字符,掩码式数组可以很好的忽略残缺的或者是无效的数据点。...masked数组是标准numpy.ndarray和 masked的组合。掩码是nomask,表示关联数组的值无效,或者是一个布尔数组,用于确定关联数组的每个元素是否有效。...当掩码的元素为False时,关联数组的相应元素有效,并且被称为未屏蔽。当掩码的元素为True时,相关数组的相应元素被称为被屏蔽(无效)。

    54840

    Python NumPy掩码数组masked array应用

    掩码数组简介 掩码数组是 NumPy 的 numpy.ma 模块提供的特殊数组,其特点是为数组中的每个元素附加一个布尔掩码(mask)。...掩码值为 True 的元素会被屏蔽,无法参与计算;掩码值为 False 的元素可以正常操作。 掩码数组的基本功能包括: 屏蔽指定的数组元素。 在忽略屏蔽元素的情况下执行计算。...支持常规的 NumPy 数组操作。 掩码数组的核心类是 numpy.ma.MaskedArray,它继承自 NumPy 数组类,具有额外的掩码属性。...掩码数组的实际应用 数据清洗 在处理含缺失值或异常值的数据时,可以利用掩码数组屏蔽不需要的数据,避免对结果产生干扰。...通过屏蔽指定元素,掩码数组可以在保留原始数据结构的同时,灵活地执行计算和操作。无论是数据清洗、插值还是图像处理,掩码数组都能显著简化工作流程,提高代码的效率和可读性。

    13310

    数据科学 IPython 笔记本 7.7 处理缺失数据

    通常,它们围绕两种策略中的一种:使用在全局表示缺失值的掩码,或选择表示缺失条目的标记值。 在掩码方法中,掩码可以是完全独立的布尔数组,或者它可以在数据表示中占用一个比特,在本地表示值的空状态。...此外,对于较小的数据类型(例如 8 位整数),牺牲一个位用作掩码,将显着减小它可以表示的值的范围。 NumPy 确实支持掩码数组吗?...因为它是一个 Python 对象,所以None不能用于任何 NumPy/Pandas 数组,只能用于数据类型为'object'的数组(即 Python 对象数组): import numpy as np...NumPy 可以推断出,数组的内容是 Python 对象。...Pandas 中的NaN和None NaN和None都有它们的位置,并且 Pandas 的构建是为了几乎可以互换地处理这两个值,在适当的时候在它们之间进行转换: pd.Series([1, np.nan

    4.1K20

    numpy介绍

    ) ndarray数组切片操作 9) ndarray数组的运算 10) ndarray数组的掩码操作 11) 多维数组的组合与拆分 12)ndarray类的其他属性 2. numpy文件操作 一、numpy...Numpy 中用 * 运算符实现 要求数组的维度必须相等 矩阵点乘运算 矩阵点乘只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义...(a > b) print(a > 3) print(a == 5) 10) ndarray数组的掩码操作 布尔掩码 布尔掩码是用索引数组中对应位置的布尔值来挑选原数组中的元素...,数组中的元素采用索引列表中的数字在原列表中取数据再放入索引中对应的位置。...文件操作 numpy加载文本文件 numpy提供了函数用于加载逻辑上可被解释为二维数组的文本文件,格式如下: 数据项1 数据项2 ...

    1.8K10
    领券