首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在使用转移学习进行对象检测的训练序列模型期间,训练和验证精度保持不变

是一个常见的情况。转移学习是一种机器学习方法,通过将已经在一个任务上训练好的模型应用于另一个相关任务上,以加快和改善模型的训练过程。

在对象检测任务中,通常会使用预训练的卷积神经网络(CNN)模型,如VGG、ResNet、Inception等,作为转移学习的基础模型。这些预训练模型在大规模图像数据集上进行了训练,学习到了丰富的特征表示。通过将这些预训练模型的权重作为初始参数,可以在较小的数据集上进行微调,以适应特定的对象检测任务。

在训练序列模型期间,训练和验证精度保持不变可能是由以下原因导致的:

  1. 数据集大小:如果训练集和验证集的规模较小,可能会导致模型无法充分学习到数据的特征。在这种情况下,即使进行了转移学习,模型的性能也可能受到限制。
  2. 数据集的类别分布:如果训练集和验证集的类别分布不平衡,即某些类别的样本数量较少,模型可能会倾向于预测数量较多的类别,而对数量较少的类别表现较差。这可能导致训练和验证精度保持不变。
  3. 转移学习策略:转移学习的策略选择也可能影响训练和验证精度。不同的任务和数据集可能需要不同的微调策略,包括冻结部分网络层、调整学习率、调整训练批次大小等。如果选择的策略不合适,训练和验证精度可能无法提升。

针对这个问题,可以尝试以下方法来改善训练和验证精度:

  1. 数据增强:通过对训练集进行数据增强操作,如随机裁剪、旋转、翻转等,可以扩充数据集的规模,增加模型的泛化能力。
  2. 调整模型架构:根据具体任务的需求,可以对预训练模型进行修改或添加额外的网络层,以更好地适应对象检测任务。
  3. 调整超参数:尝试不同的学习率、批次大小、优化器等超参数的组合,以找到更好的模型训练配置。
  4. 进行迁移学习的层级选择:根据任务的相似性,选择合适的层级进行迁移学习,可以是整个模型或仅部分层级。
  5. 集成学习:尝试使用集成学习方法,如投票、平均等,将多个模型的预测结果进行组合,以提高整体性能。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云机器学习平台(https://cloud.tencent.com/product/tensorflow)
  • 腾讯云图像识别(https://cloud.tencent.com/product/tii)
  • 腾讯云视频智能分析(https://cloud.tencent.com/product/vca)
  • 腾讯云人工智能开发平台(https://cloud.tencent.com/product/ai)
  • 腾讯云物联网平台(https://cloud.tencent.com/product/iotexplorer)
  • 腾讯云移动开发平台(https://cloud.tencent.com/product/mobdev)
  • 腾讯云对象存储(https://cloud.tencent.com/product/cos)
  • 腾讯云区块链服务(https://cloud.tencent.com/product/tbaas)
  • 腾讯云元宇宙(https://cloud.tencent.com/product/tencent-meta-universe)
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Cycle-object consistency for image-to-image domain adaptation

生成对抗性网络(GANs)的最新进展已被证明可以通过数据扩充有效地执行目标检测器的域自适应。虽然GANs非常成功,但那些能够在图像到图像的翻译任务中很好地保存目标的方法通常需要辅助任务,例如语义分割,以防止图像内容过于失真。然而,在实践中很难获得像素级注释。或者,实例感知图像转换模型分别处理对象实例和背景。然而,它在测试时需要目标检测器,假设现成的检测器在这两个领域都能很好地工作。在这项工作中,我们介绍了AugGAN Det,它引入了循环目标一致性(CoCo)损失,以生成跨复杂域的实例感知翻译图像。 目标域的目标检测器直接用于生成器训练,并引导翻译图像中保留的目标携带目标域外观。与之前的模型(例如,需要像素级语义分割来强制潜在分布保持对象)相比,这项工作只需要更容易获取的边界框注释。接下来,对于感知实例的GAN模型,我们的模型AugGAN-Det在没有明确对齐实例特征的情况下内化了全局和对象样式转移。最重要的是,在测试时不需要检测器。实验结果表明,我们的模型优于最近的目标保持和实例级模型,并实现了最先进的检测精度和视觉感知质量。

01

CVPR:深度无监督跟踪

本文提出了一种无监督的视觉跟踪方法。与使用大量带注释数据进行监督学习的现有方法不同,本文的CNN模型是在无监督的大规模无标签视频上进行训练的。动机是,强大的跟踪器在向前和向后预测中均应有效(即,跟踪器可以在连续帧中向前定位目标对象,并在第一个帧中回溯到其初始位置)。在Siameses相关过滤器网络上构建框架,该网络使用未标记的原始视频进行训练。同时提出了一种多帧验证方法和一种对成本敏感的损失,以促进无监督学习。由于没有bells & whistles,本文的无监督跟踪器可达到完全受监督的在训练过程中需要完整且准确的标签的跟踪器的基线精度。此外,无监督框架在利用未标记或标记较弱的数据以进一步提高跟踪准确性方面具有潜力。

03

Thermal Object Detection using Domain Adaptation through

最近发生的一起自动驾驶车辆致命事故引发了一场关于在自动驾驶传感器套件中使用红外技术以提高鲁棒目标检测可见性的辩论。与激光雷达、雷达和照相机相比,热成像具有探测红外光谱中物体发出的热差的优点。相比之下,激光雷达和相机捕捉在可见光谱,和不利的天气条件可以影响其准确性。热成像可以满足传统成像传感器对图像中目标检测的局限性。提出了一种用于热图像目标检测的区域自适应方法。我们探讨了领域适应的多种概念。首先,利用生成式对抗网络,通过风格一致性将低层特征从可见光谱域转移到红外光谱域。其次,通过转换训练好的可见光光谱模型,采用具有风格一致性的跨域模型进行红外光谱中的目标检测。提出的策略在公开可利用的热图像数据集(FLIR ADAS和KAIST多光谱)上进行评估。我们发现,通过域适应将源域的低层特征适应到目标域,平均平均精度提高了约10%。

01

Let There Be Light: Improved Traffic Surveillancevia Detail Preserving Night-to-Day Transfer

近年来,在深度卷积神经网络(CNNs)的帮助下,图像和视频监控在智能交通系统(ITS)方面取得了长足的进步。作为最先进的感知方法之一,检测视频监控每帧中感兴趣的目标是ITS广泛期望的。目前,在具有良好照明条件的日间场景等标准场景中,物体检测显示出显著的效率和可靠性。然而,在夜间等不利条件下,物体检测的准确性会显著下降。该问题的主要原因之一是缺乏足够的夜间场景注释检测数据集。在本文中,我们提出了一个框架,通过使用图像翻译方法来缓解在不利条件下进行目标检测时精度下降的情况。 为了缓解生成对抗性网络(GANs)造成的细节破坏,我们建议利用基于核预测网络(KPN)的方法来重新定义夜间到日间的图像翻译。KPN网络与目标检测任务一起训练,以使训练的日间模型直接适应夜间车辆检测。车辆检测实验验证了该方法的准确性和有效性。

02

Frustratingly Simple Few-Shot Object Detection

从几个例子中检测稀有物体是一个新兴的问题。 先前的研究表明元学习是一种很有前途的方法。 但是,精细的调音技术没有引起足够的重视。 我们发现,仅微调现有检测器的最后一层稀有类是至关重要的少数射击目标检测任务。 这种简单的方法比元学习方法的性能要高出约2 ~ 20点,有时甚至是之前方法的准确度的两倍。 然而,少数样本中的高方差往往会导致现有基准测试的不可靠性。 基于PASCAL VOC、COCO和LVIS三个数据集,我们通过对多组训练实例进行采样来修改评估协议,以获得稳定的比较,并建立新的基准。 同样,我们的微调方法在修订后的基准上建立了一个新的最先进状态。

02

Generative Modeling for Small-Data Object Detection

本文探讨了小数据模式下的目标检测,由于数据稀有和注释费用的原因,只有有限数量的注释边界框可用。这是当今的一个常见挑战,因为机器学习被应用于许多新任务,在这些任务中,获得训练数据更具挑战性,例如在医生一生中有时只看到一次罕见疾病的医学图像中。在这项工作中,我们从生成建模的角度探讨了这个问题,方法是学习生成具有相关边界框的新图像,并将其用于训练目标检测器。我们表明,简单地训练先前提出的生成模型并不能产生令人满意的性能,因为它们是为了图像真实性而不是目标检测精度而优化的。为此,我们开发了一种具有新型展开机制的新模型,该机制联合优化生成模型和检测器,以使生成的图像提高检测器的性能。 我们表明,该方法在疾病检测和小数据行人检测这两个具有挑战性的数据集上优于现有技术,将NIH胸部X射线的平均精度提高了20%,定位精度提高了50%。

02

Progressive Domain Adaptation for Object Detection

最近用于对象检测的深度学习方法依赖于大量的边界框注释。收集这些注释既费力又昂贵,但当对来自不同分布的图像进行测试时,监督模型并不能很好地推广。领域自适应通过使现有标签适应目标测试数据来提供解决方案。然而,领域之间的巨大差距可能会使适应成为一项具有挑战性的任务,从而导致不稳定的训练过程和次优结果。在本文中,我们建议用一个中间域来弥合领域差距,并逐步解决更容易的适应子任务。该中间域是通过平移源图像以模仿目标域中的图像来构建的。为了解决领域转移问题,我们采用对抗性学习来在特征级别对齐分布。此外,应用加权任务损失来处理中间域中的不平衡图像质量。 实验结果表明,我们的方法在目标域上的性能优于最先进的方法。

03

计算机视觉最新进展概览(2021年6月6日到2021年6月12日)

水下目标检测技术已引起了人们的广泛关注。 然而,由于几个挑战,这仍然是一个未解决的问题。 我们通过应对以下挑战,使之更加现实。 首先,目前可用的数据集基本上缺乏测试集注释,导致研究者必须在自分测试集(来自训练集)上与其他sota进行比较。 训练其他方法会增加工作量,不同的研究人员划分不同的数据集,导致没有统一的基准来比较不同算法的性能。 其次,这些数据集也存在其他缺点,如相似图像过多或标签不完整。 针对这些挑战,我们在对所有相关数据集进行收集和重新标注的基础上,引入了一个数据集——水下目标检测(detection Underwater Objects, DUO)和相应的基准。 DUO包含了多种多样的水下图像,并有更合理的注释。 相应的基准为学术研究和工业应用提供了SOTAs(在mmddetection框架下)的效率和准确性指标,其中JETSON AGX XAVIER用于评估检测器速度,以模拟机器人嵌入式环境。

01

Generalized Few-Shot Object Detection without Forgetting

近年来,少样本目标检测被广泛用于处理数据有限的情况。虽然大多数以前的工作仅仅集中在少样本类别的性能上,我们声称检测所有类别是至关重要的,因为测试样本可能包含现实应用中的任何实例,这需要少样本检测器在不忘记的情况下学习新概念。通过对基于迁移学习的方法的分析,利用一些被忽略但有益的性质,设计了一种简单而有效的少样本检测器——Retentive R-CNN。它由偏置平衡的局部概率神经网络和预处理的局部概率神经网络组成,并通过重检测器在不忘记先前知识的情况下找到少量的类目标。在少拍检测基准上的大量实验表明,在所有设置中,Retentive R-CNN在整体性能上明显优于最先进的方法,因为它可以在少样本类上获得有竞争力的结果,并且根本不会降低基类的性能。我们的方法已经证明了长期期望的永不遗忘学习者在目标检测中是可用的。

01
领券