首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tf.summary

此方法将提供的摘要封装在事件协议缓冲区中,并将其添加到事件文件中。你可以使用tf.Session.run或tf.张量来传递计算任何总结op的结果。对这个函数求eval。...tf.summary.histogram( name, values, collections=None, family=None)添加直方图摘要使您能够可视化数据在TensorBoard...您可以在这里看到关于TensorBoard直方图仪表板的详细说明。生成的摘要有一个摘要值,其中包含值的直方图。如果任何值不是有限的,该op将报告InvalidArgument错误。...也将作为一个系列名称在TensorBoard。values: 一个实数张量。任何形状。用于构建直方图的值。collections: 可选的图形集合键列表。...family: 可选的;如果提供,则用作摘要标记的前缀,该标记控制未设置display_name时在TensorBoard上显示的名称。

2.6K61
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    TensorBoard的最全使用教程:看这篇就够了

    TensorBoard 的主要功能包括: 可视化模型的网络架构 跟踪模型指标,如损失和准确性等 检查机器学习工作流程中权重、偏差和其他组件的直方图 显示非表格数据,包括图像、文本和音频 将高维嵌入投影到低维空间...当页面第一次打开时,我们将看到如下内容: 2、在 Jupyter Notebooks 中使用 TensorBoard 如果想在 Jupyter Notebooks 中使用 TensorBoard,可以使用以下命令...根据 Keras 文档,回调是可以在训练的各个阶段执行操作的对象。当我们想在训练过程中的特定时间节点(例如,在每次epoch/batch之后)自动执行任务时,我们都可以使用回调。...tf_callback = tf.keras.callbacks.TensorBoard(log_dir="./logs") 现在可以在模型上调用 fit 方法时将回调作为参数传入。...在使用 TensorFlow 时,使用 Summary API 创建了将数据记录到 logdir 文件夹的对象。在使用 PyTorch 时,官方也提供了类似的API。

    35.8K53

    用Keras从零开始6步骤训练神经网络

    本文将简要介绍Keras的功能特点,使用Keras构建模型一般流程的6个步骤,以及使用Keras处理mnist分类问题的一个简单范例。...当数据规模较大时,需要使用Sequence等工具构建数据管道以备在训练过程中并行读取。...3,训练模型 一般情况下可以用模型的fit方法训练模型,当数据集较大时,应当使用内存友好的fit_generator方法训练模型,如果需要细粒度的自定义训练过程,可以用train_on_batch逐批次地训练模型...然后可以用matplotlib将结果可视化,也可以利用回调函数在tensorboard中进行可视化。如果需要自定义评估指标,可以利用backend接口进行编写。...在模型训练完成后,可以用evaluate方法对模型进行评估,当数据集较大时,使用对内存友好的evaluate_generator方法评估模型,如果需要细粒度的评估,可以用test_on_batch在一个批次上评估模型

    1.4K20

    TensorFlow2.0(9):神器级可视化工具TensorBoard

    本文介绍两种使用TensorBoard的方式。不过,无论使用那种方式,请先启动TensorBoard的web应用,这个web应用读取模型训练时的日志数据,每隔30秒更新到网页端。...2 在Model.fit()中使用TensorBoard import tensorflow as tf import tensorboard import datetime mnist = tf.keras.datasets.mnist...write_grads:是否在TensorBoard中可视化渐变直方图。histogram_freq必须大于0。 batch_size:用以直方图计算的传入神经元网络输入批的大小。...使用’batch’时,在每个batch后将损失和指标写入TensorBoard。这同样适用’epoch’。...如果使用整数,比方说1000,回调将会在每1000个样本后将指标和损失写入TensorBoard。请注意,过于频繁地写入TensorBoard会降低您的训练速度。

    3.6K30

    TensorFlow 官方中文版教程来了

    TensorFlow 提供了各种 API,可供初学者和专家在桌面、移动、网络和云端环境下进行开发。...特征列,在不对模型做出更改的情况下处理各种类型的输入数据。 Estimator 的数据集,使用 tf.data 输入数据。 创建自定义 Estimator,编写自己的 Estimator。...加速器 使用 GPU - 介绍了 TensorFlow 如何将操作分配给设备,以及如何手动更改此类分配。 使用 TPU - 介绍了如何修改 Estimator 程序以便在 TPU 上运行。...以下指南介绍了如何使用 TensorBoard: TensorBoard:可视化学习过程 - 介绍了 TensorBoard。 TensorBoard:图的可视化 - 介绍了如何可视化计算图。...TensorBoard 直方图信息中心 - 演示了如何使用 TensorBoard 的直方图信息中心。 其他 TensorFlow 版本兼容性 - 介绍了向后兼容性保证及无保证内容。

    1K20

    轻松理解Keras回调

    在本文中,我将介绍如何使用Keras回调(如ModelCheckpoint和EarlyStopping)监控和改进深度学习模型。...什么是回调 Keras文档给出的定义为: 回调是在训练过程的特定阶段调用的一组函数,可以使用回调来获取训练期间内部状态和模型统计信息的视图。...保存检查点的作用在于保存训练中间的模型,下次在训练时,可以加载模型,而无需重新训练,减少训练时间。...该回调写入可用于TensorBoard的日志,通过TensorBoard,可视化训练和测试度量的动态图形,以及模型中不同图层的激活直方图。...log存放的目录,其它参数并不需要了解,使用默认值即可: from keras.callbacks import TensorBoard tensorboard = TensorBoard(log_dir

    1.9K20

    使用PyTorch的TensorBoard-可视化深度学习指标 | PyTorch系列(二十五)

    然后,将图像和网络添加到TensorBoard将使用的文件中。实际上,可以说网络图和图像的batch都已添加到TensorBoard中。 ‍...当运行tensorboard命令时,我们传递一个参数来告诉tensorboard数据在哪里。...就像这样: tensorboard --logdir=runs TensorBoard服务器将启动并正在侦听端口6006上的http请求。这些详细信息将显示在控制台中。...TensorBoard直方图和标量 我们可以添加到TensorBoard的下一个数据导入类型是数字数据。我们可以添加将随时间或epoch 显示的标量值。...我们还可以将值添加到直方图中以查看值的频率分布。 要添加标量和直方图,我们使用PyTorch SummaryWriter类提供的相应方法。

    7.7K51

    深度学习快速参考:1~5

    您可能应该考虑将这些环境变量添加到~/.bash_profile,以便在每次登录时进行设置,如以下代码所示: export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/...在每个阶段结束时,Keras 将在验证集上测试模型,并使用损失函数和您指定的任何其他指标输出结果。 另外,您可以将validation_split设置为浮点值,以指定要用于验证的训练组的百分比。...verbose=1输出一个进度条,显示当前周期的状态,在周期结束时,Keras 将输出训练和验证损失。...在 Keras 和 TensorFlow 训练中,Keras 将指标和激活直方图(稍后将对此进行详细介绍)写入您指定的日志目录中。...在我们继续下一个示例时,这将更有意义。 创建一个 TensorBoard 回调 在本章中,我通过复制第 2 章“开始使用深度学习来解决回归问题”的网络和数据。

    1K10

    keras系列︱Sequential与Model模型、keras基本结构功能(一)

    ) 在使用keras时候会出现总是占满GPU显存的情况,可以通过重设backend的GPU占用情况来进行调节。...换而言之如果跑在一个大数据集上还是会用到更多的显存。以上的显存限制仅仅为了在跑小数据集时避免对显存的浪费而已。...9.如何在keras中使用tensorboard RUN = RUN + 1 if 'RUN' in locals() else 1 # locals() 函数会以字典类型返回当前位置的全部局部变量...在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。...kwargs: 使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function 注意: 模型在使用前必须编译,否则在调用fit

    10.2K124

    keras系列︱Sequential与Model模型、keras基本结构功能(一)

    ) 在使用keras时候会出现总是占满GPU显存的情况,可以通过重设backend的GPU占用情况来进行调节。...换而言之如果跑在一个大数据集上还是会用到更多的显存。以上的显存限制仅仅为了在跑小数据集时避免对显存的浪费而已。...9.如何在keras中使用tensorboard RUN = RUN + 1 if 'RUN' in locals() else 1 # locals() 函数会以字典类型返回当前位置的全部局部变量...模型检查点ModelCheckpoint (1)save_best_only:当设置为True时,将只保存在验证集上性能最好的模型 (2) mode:‘auto’,‘min’,‘max’之一,在save_best_only...kwargs: 使用TensorFlow作为后端请忽略该参数,若使用Theano作为后端,kwargs的值将会传递给 K.function 注意: 模型在使用前必须编译,否则在调用fit或evaluate

    1.8K40

    开发 | 用PyTorch还是TensorFlow?斯坦福大学CS博士生带来全面解答

    部分原因是因为将想要运行的所有预处理代码添加到TensorFlow图中并不总是直接的,例如计算时频谱(spectrogram)。 而且,API本身更繁琐,更难以学习。...设备管理 优胜者: TensorFlow TensorFlow管理设备时的无缝性非常好。通常不需要规定任何东西,因为默认已经设好了。例如,如果GPU可用,TensorFlow将默认在GPU上运行。...在PyTorch中,即使支持CUDA,都必须明确地将所有东西移到设备上。 TensorFlow设备管理的唯一缺点是,即使你只使用一个GPU它也会默认占用所有GPU的显存。...TensorBoard作为web服务运行,它可以非常方便地将存储在无头节点(headless node)上的结果可视化。 我在用PyTorch之前一直在用这种功能并尝试找到能替代这种功能的选择。...istensorboard_logger库甚至比TensorFlow中的TensorBoard摘要数据更容易使用,不过需要安装TensorBoard来使用。

    1.8K60
    领券