首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NanoNets:数据有限如何应用深度学习?

我觉得人工智能就像是去建造一艘火箭飞船。你需要一个巨大的引擎和许多燃料。如果你有了一个大引擎,但燃料不够,那么肯定不能把火箭送上轨道;如果你有一个小引擎,但燃料充足,那么说不定根本就无法成功起飞。所以,构建火箭船,你必须要一个巨大的引擎和许多燃料。 深度学习(创建人工智能的关键流程之一)也是同样的道理,火箭引擎就是深度学习模型,而燃料就是海量数据,这样我们的算法才能应用上。——吴恩达 使用深度学习解决问题的一个常见障碍是训练模型所需的数据量。对大数据的需求是因为模型中有大量参数需要学习。 以下是几个例子展

06
您找到你想要的搜索结果了吗?
是的
没有找到

opencv demo参数说明

public void myOPENCV_value_int() { myOPENCV_value[(int)myOPENCV.cvt_color, 0] = 11;//颜色空间转换 参数一 转换标识符 myOPENCV_value[(int)myOPENCV.cvt_color, 1] = 0;//颜色空间转换 参数二 通道 myOPENCV_value[(int)myOPENCV.cvt_color, 2] = 0;//颜色空间转换 myOPENCV_value[(int)myOPENCV.cvt_color, 3] = 0;//颜色空间转换 myOPENCV_value[(int)myOPENCV.boxfilter, 0] = -1;//方框滤波 参数一 图像深度 myOPENCV_value[(int)myOPENCV.boxfilter, 1] = 5;//方框滤波 参数二 size内核宽度 myOPENCV_value[(int)myOPENCV.boxfilter, 2] = 5;//方框滤波 参数三 size内核高度 myOPENCV_value[(int)myOPENCV.boxfilter, 3] = 0;//方框滤波 myOPENCV_value[(int)myOPENCV.blur, 0] = 5;//均值滤波 参数一 size内核宽度 myOPENCV_value[(int)myOPENCV.blur, 1] = 5;//均值滤波 参数二 size内核高度 myOPENCV_value[(int)myOPENCV.blur, 2] = 0;//均值滤波 myOPENCV_value[(int)myOPENCV.blur, 3] = 0;//均值滤波 myOPENCV_value[(int)myOPENCV.gaussianblur, 0] = 5;//颜色空间转换 参数一 size内核宽度 myOPENCV_value[(int)myOPENCV.gaussianblur, 1] = 5;//颜色空间转换 参数二 size内核宽度 myOPENCV_value[(int)myOPENCV.gaussianblur, 2] = 0;//颜色空间转换 参数三 sigmaX myOPENCV_value[(int)myOPENCV.gaussianblur, 3] = 0;//颜色空间转换 参数四 sigmaY myOPENCV_value[(int)myOPENCV.medianblur, 0] = 5;//中值滤波 参数一 孔径线性尺寸 myOPENCV_value[(int)myOPENCV.medianblur, 1] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.medianblur, 2] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.medianblur, 3] = 0;//中值滤波 myOPENCV_value[(int)myOPENCV.bilateralfilter, 0] = 25;//双边滤波 参数一 像素相邻直径 myOPENCV_value[(int)myOPENCV.bilateralfilter, 1] = 25;//双边滤波 参数二 颜色空间滤波器sigmacolor myOPENCV_value[(int)myOPENCV.bilateralfilter, 2] = 25;//双边滤波 参数三 坐标空间滤波器sigmaspace myOPENCV_value[(int)myOPENCV.bilateralfilter, 3] = 0;//双边滤波 myOPENCV_value[(int)myOPENCV.dilate, 0] = 0;//膨胀 参数一 MorphShapes 只能取0 1 2 myOPENCV_value[(int)myOPENCV.di

05

Spatial Attention Pyramid Network for Unsupervised Domain Adaptation

无监督域适配在各种计算机视觉任务重很关键,比如目标检测、实例分割和语义分割。目的是缓解由于域漂移导致的性能下降问题。大多数之前的方法采用对抗学习依赖源域和目标域之间的单模式分布,导致在多种场景中的结果并不理想。为此,在本文中,我们设计了一个新的空口岸注意力金字塔网络来进行无监督域适配。特别的,我们首先构建了空间金字塔表示来获得目标在不同尺度的内容信息。以任务指定的信息为引导,在每个尺度上,我们组合了密集的全局结构表示和局部纹理模式,有效的使用了空间注意力截止。采用这种方式,网络被强迫关注内容信息由区别力的地方来进行域适配。我们在各种由挑战性的数据集上进行了昂贵的实验,对目标检测、实例分割和语义分割进行了域适配,这证明了我们的方法比最佳的方法有了很大的提升。

03

Photoshop 2022下载-Photoshop 2022版本23下载v23.5.0

Photoshop可分为图画编辑、图画组成、校色调色及特效制造有些知识兔。图画编辑是图画处理的根知识兔底,可以对图画知识兔做各种变换如扩大、减小、旋知识兔转、歪斜、镜像、透视等。也可进行复制、去掉斑驳、修补、知识兔修饰图画的破损等。图画组成则是将几幅图画经过图层操作知识兔、东西使用组成完好的、传达清晰意义的图画,这是知识兔美术规划的必经之路。photoshop供给的绘图东知识兔西让外来图画与创意极好地交融。校色调色是photoshop中深具威力的功能知识兔之一,可方便快捷地对图画的知识兔色彩进行明暗、色编的调整和校对,也可在不一样色彩进行切换以满意知识兔图画在不一样范畴如页面规划、打印、多媒体等方面使用。

00

CSS | 视差滚动 | 笔记

image-20230720145639107css3中的坐标系,rotateX就是绕着x轴旋转,rotateY就是绕着Y轴旋转,rotateZ就是绕着z轴旋转(也就是xy平面的旋转)。 perspective属性用来设置视点,在css3的模型中,视点是在Z轴所在方向上的。 translateX,translateY表现出在屏幕中的上下左右移动,transformZ 的直观表现形式就是大小变化, 实质是 XY平面相对于视点的远近变化(说远近就一定会说到离什么参照物远或近,在这里参照物就是perspective属性)。 比如设置了 perspective 为 200px; 那么 transformZ 的值越接近 200,就是离的越近,看上去也就越大,超过200就看不到了, 因为相当于跑到后脑勺去了,你不可能看到自己的后脑勺。 (200-transformZ的值)就是视点和xy平面的距离(初始是屏幕的位置,此时transformZ的值为0)。

02

EmguCV 常用函数功能说明「建议收藏」

大家好,又见面了,我是你们的朋友全栈君。AbsDiff,计算两个数组之间的绝对差。 dst(I)c = abs(src1(I)c-src2(I)c)。所有数组必须具有相同的数据类型和相同的大小(或ROI大小)。 累加,将整个图像或其所选区域添加到累加器和。 累积产品,将2张图像或其选定区域的产品添加到累加器中。 AccumulateSquare,将输入src或其选定的区域,增加到功率2,添加到累加器sqsum。 累积权重,计算输入src和累加器的加权和,以使acc成为帧序列的运行平均值:acc(x,y)=(1-alpha)* acc(x,y)+ alpha * image(x,y )如果mask(x,y)!= 0,其中alpha调节更新速度(累加器对于先前帧的多少速度).. 自适应阈值,将灰度图像转换为二进制图像。每个像素单独计算的阈值。对于方法CV_ADAPTIVE_THRESH_MEAN_C,它是blockSize x blockSize像素邻域的平均值,由param1减去。对于方法CV_ADAPTIVE_THRESH_GAUSSIAN_C,它是blockSize x blockSize像素邻域的加权和(高斯),由param1减去。 添加,将一个数组添加到另一个数组:dst(I)= src1(I)+ src2(I)if mask(I)!= 0所有数组必须具有相同的类型,除了掩码和大小(或ROI)尺寸)。 AddWeighted,计算的两个数组的加权和如下:dst(I)= src1(I)* alpha + src2(I)* beta + gamma所有的数组必须具有相同的类型和相同的大小(或ROI大小)。 ApplyColorMap,将颜色映射应用于图像。 ApproxPolyDP,近似具有指定精度的多边形曲线。 ArcLength,计算轮廓周长或曲线长度。 ArrowedLine,绘制从第一个点指向第二个点的箭头段。 BilateralFilter,将双边滤镜应用于图像。 BitwiseAnd,并计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)&src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseNot,反转每个数组元素的每一位:。 BitwiseOr,计算两个数组的每元素逐位分离:dst(I)= src1(I)| src2(I)在浮点数组的情况下,它们的位表示用于操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 BitwiseXor,计算两个数组的每元素的逐位逻辑连接:dst(I)= src1(I)^ src2(I)if mask(I)!= 0在浮点数组的情况下,使用它们的位表示为了操作。所有阵列必须具有相同的类型,除了掩码和大小相同。 模糊,使用归一化的盒式过滤器模糊图像。 BoundingRectangle,返回2d点集的右上角矩形。 BoxFilter,使用框过滤器模糊图像 BoxPoints(RotatedRect),计算输入2d框的顶点。 BoxPoints(RotatedRect,IOutputArray),计算输入2d框的顶点。 CalcBackProject,计算直方图的反投影。 CalcCovar矩阵,计算一组向量的协方差矩阵。 CalcGlobalOrientation,计算所选区域中的一般运动方向,并返回0到360之间的角度。首先,函数构建方向直方图,并将基本方向作为直方图最大值的坐标。之后,该函数计算相对于基本方向的移位,作为所有方向向量的加权和:运动越近,权重越大。得到的角度是基本方向和偏移的圆和。 CalcHist,计算一组数组的直方图 CalcMotionGradient,计算mhi的导数Dx和Dy,然后计算梯度取向为:方向(x,y)= arctan(Dy(x,y)/ Dx(x,y)),其中Dx(x,y)考虑Dy(x,y)“符号(如cvCartToPolar函数)。填写面罩后,指出方向有效(见delta1和delta2说明).. CalcOpticalFlowFarneback(IInputArray,IInputArray,IInputOutputArray,Double,Int32,Int32,Int32,Int32,Double,OpticalflowFarnebackFlag),使用Gunnar Farneback算法计算密集的光流。 CalcOpticalFlowFarneback(Image <Gray,Byte>,Image <Gray,Byte>,Image <Gray,Single>,Image <Gray,Single>,Double

02

Progressive Domain Adaptation for Object Detection

最近用于对象检测的深度学习方法依赖于大量的边界框注释。收集这些注释既费力又昂贵,但当对来自不同分布的图像进行测试时,监督模型并不能很好地推广。领域自适应通过使现有标签适应目标测试数据来提供解决方案。然而,领域之间的巨大差距可能会使适应成为一项具有挑战性的任务,从而导致不稳定的训练过程和次优结果。在本文中,我们建议用一个中间域来弥合领域差距,并逐步解决更容易的适应子任务。该中间域是通过平移源图像以模仿目标域中的图像来构建的。为了解决领域转移问题,我们采用对抗性学习来在特征级别对齐分布。此外,应用加权任务损失来处理中间域中的不平衡图像质量。 实验结果表明,我们的方法在目标域上的性能优于最先进的方法。

03
领券