首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

2D-Driven 3D Object Detection in RGB-D Images

在本文中,我们提出了一种在RGB-D场景中,在目标周围放置三维包围框的技术。我们的方法充分利用二维信息,利用最先进的二维目标检测技术,快速减少三维搜索空间。然后,我们使用3D信息来定位、放置和对目标周围的包围框进行评分。我们使用之前利用常规信息的技术,独立地估计每个目标的方向。三维物体的位置和大小是用多层感知器(MLP)学习的。在最后一个步骤中,我们根据场景中的目标类关系改进我们的检测。最先进的检测方法相比,操作几乎完全在稀疏的3D域,在著名的SUN RGB-D实验数据集表明,我们建议的方法要快得多(4.1 s /图像)RGB-D图像中的3目标检测和执行更好的地图(3)高于慢是4.7倍的最先进的方法和相对慢两个数量级的方法。这一工作提示我们应该进一步研究3D中2D驱动的目标检测,特别是在3D输入稀疏的情况下。

03

机器学习算法的R语言实现:朴素贝叶斯分类器

1、引子 朴素贝叶斯方法是一种使用先验概率去计算后验概率的方法,其中 朴素 的意思实际上指的是一个假设条件,后面在举例中说明。本人以为,纯粹的数学推导固然有其严密性、逻辑性的特点,但对我等非数学专业的人来说,对每一推导步骤的并非能透彻理解,我将从一个例子入手,类似于应用题的方式,解释朴素贝叶斯分类器,希望能对公式的理解增加形象化的场景。 2、实例 最近“小苹果”很火,我们就以苹果来举例说,假设可以用三个特征来描述一个苹果,分别为“尺寸”、“重量”和“颜色”;其中“尺寸”的取值为小、大,“重量”的取值为轻、

09

【目标检测】 开源 | CVPR2020 | 将DIoU和CIoU Loss用于目标检测的Bbox回归,表现SOTA

边界盒回归是目标检测的关键步骤。在现有的方法中,虽然n范数损失被广泛地应用于包围盒回归,但不适合用于评估度量,即IoU。最近,有学者提出了IoU损失和广义IoU(GIoU)损失来衡量IoU度量,但仍存在收敛速度慢和回归不准确的问题。本文提出了一个Distance-IoU (DIoU) loss,合并了预测框和目标框之间的标准化距离,在训练中比IoU和GIoU loss收敛得更快。此外,本文还总结了边界盒回归中的三个几何因素(重叠面积、中心点距离和纵横比),并以此为基础提出了一个Complete IoU(CIoU)损失,从而加快了收敛速度,提高了性能。通过将DIoU和CIoU损失合并到YOLOv3、SSD和Faster RCNN等最新的目标检测算法,在IoU度量方面和GIoU度量方面实现了显著的性能提高。而且DIoU很容易地应用到非最大抑制(non-maximum suppression,NMS)作为准则,进一步促进性能提升。

01

Excel量化分析案例:投资组合收益与风险量化分析

证券和股票市场的投资决策本质上就是一种在回报收益和投资风险之间权衡的决策。投资者需要早不同的投资产品间做出选择,同时也要考虑在选择出的投资产品上投放的资金比例,选择结果组成了一个投资组合。传统的投资组合收益与风险分析集中在两个关键统计量上:均值和方差。均值是指投资组合的期望收益率,是组合中所有投资产品的收益率加权平均;方差指的是投资组合收益率的方差,用以刻画收益率的变化和风险程度。根据投资组合理论,一个理性的投资组会在给定方差水平下调整投资组合资金投放比例使得期望收益最大化,或收益方差最小化。

01
领券