引言 深度学习模型的训练本质上是一个优化问题,而常采用的优化算法是梯度下降法(SGD)。对于SGD算法,最重要的就是如何计算梯度。...如果你学过微积分,我相信你一定知道如何计算梯度,或者说计算导数。对于深度网络来说,其可以看成多层非线性函数的堆积,即: ?...在微积分里面,求解复合函数的导数采用链式法则再合适不过了。其实本质上BP算法就是链式法则的一个调用。让我们先忘记BP算法,从链式法则开始说起。...对于两个矩阵相乘的话,在反向传播时反正是另外一个项与传播过来的梯度项相乘。差别就在于位置以及翻转。这里有个小窍门,就是最后计算出梯度肯定要与原来的矩阵是同样的shape。那么这就容易了,反正组合不多。...,就是如何计算梯度。
计算图像的梯度是在进行图像处理时经常用到的方法,但是这玩意自己手写未免效率低而且容易出错。OpenCV里集成了相应的函数,只不过用的人好像并不多导致我找了半天才找到。姑且记一下以备日后使用。...计算像素梯度的绝对值 这个用到了cv2.magnitude方法,具体用法如下: sobelx=cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3)#1,0表示只在x方向求一阶导数 sobely...得到的mag就是对应每个像素的梯度矩阵。实际上这也可以算成边缘检测吧。...对于Sobel函数有个注意点,他的第二个参数是扩展了像素的数值范围,因为梯度是有方向的,所以sobel函数得到的是有正有负的值,所以相当于扩大了取值。...通常情况下我们会加上下面的函数来得到梯度的绝对值: sobelx=cv2.convertScaleAbs(cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3)) 在外面套一个取绝对值的函数
然而在模型的优化上,梯度下降并非唯一的选择,甚至在很多复杂的优化求解场景下,一些非梯度优化方法反而更具有优势。而在众多非梯度优化方法中,演化策略可谓最耀眼的那颗星!...当我们使用一个「黑盒算法」时,即使不知道目标函数 f(x):Rn→R 的精确解析形式(因此不能计算梯度或 Hessian 矩阵)你也可以对 f(x) 进行评估。...我们可以通过以下方式将演化算法概括为一种通用的优化方案: 假设我们想要优化一个函数 f(x),而且无法直接计算梯度。但是,我们在给定任意 x 的情况下仍然可以评估 f(x),而且得到确定性的结果。...1、自然梯度 给定一个参数为 θ 的目标函数 J(θ),我们的目标是找到最优的 θ,从而最大化目标函数的值。...朴素梯度会以当前的 θ 为起点,在很小的一段欧氏距离内找到最「陡峭」的方向,同时我们会对参数空间施加一些距离的限制。换而言之,我们在 θ 的绝对值发生微小变化的情况下计算出朴素梯度。
但有时候仍需对某类模型进行大量的重复计算,即无需人工干预的批处理计算。这种类型的计算往往是对某个参数稍作改变,计算相应结果,以此获得最优的参数,如模型的几何尺寸,材料参数,或边界条件值等。...脚本批处理计算主流的CAE软件都已经支持脚本批处理能力,由于自动化测试和脚本批处理的本质是一样的,都是一种数据持久化的宏命令。因此,已经支持自动化测试的CAE软件,肯定也具有批处理脚本计算的能力。...首先,在XML脚本中,建立一个WELSIM的计算流程。...图形化项目文件批处理计算WELSIM支持在项目树中同时建立多个项目。如图下图所示,建立了三个FEM项目。...设置好所有的材料,接触,边界等条件后,可以从菜单栏中点击Mesh & Solve All按钮,实现对所有项目的批处理计算。此功能可以在一个项目计算完成后,自动计算下个项目,中间无需人工干预。
考虑到批处理系统和流计算系统在语义上的不同,我也很愿意来帮助大家来理解流计算的方方面面,如它能做什么?怎么使用它最好?...尽管我本人也喜欢使用流式计算来代表这种类型的数据处理方式,但是在本文这个环境里,这个说法是误导的。用批处理引擎循环运行来处理无穷数据这个方法在批处理系统刚开始构思的时候就出现了。...批处理系统传统上不是设计来处理低延迟或推测性结果这个事实仅仅是一个历史产物,并无它意。当然,如果想,批处理引擎也完全能产生近似结果。...因为如果想用流计算在批处理擅长的领域打败它,你只需要能实现两件事: 正确性:这保证流计算能和批处理平起平坐。 本质上,准确性取决于存储的一致性。...现有的批处理系统都保证强一致性,不会让你在使用前去检查计算结果是否正确。所以也不要浪费你的时间在那些达不到这样标准的流计算系统上。
在R语言中,apply系列函数作为批量处理函数,可以循环遍历某个集合内的所有或部分元素,以简化操作。这些函数底层是通过C来实现的,所以效率也比手工遍历来的高效。...apply族函数分别有apply函数,tapply函数,lapply函数,mapply函数。每一个函数都有自己的特点,在处理不同类型的数据可以选用相对应的函数。...apply族函数分别有apply函数,tapply函数,lapply函数,mapply函数。每一个函数都有自己的特点,在处理不同类型的数据可以选用相对应的函数。...lapply函数得到处理得到的数据类型是列表,而sapply函数得到处理的数据类型是向量。这两个函数除了在返回值类型不同外,其他方面基本完全一样。 ? ?...总结以上函数应用可以减少在R语言中的For循环,从而提升R语言效率。 欢迎各位学习交流
在初高中时,若想求得极值,则需要先求出该函数的导数。 即另y'= 0,再求得极值。而梯度下降法则是累计将x减去每次得到的导数值,而最优的x*值即为差值最小的值的点。这里的每次迭代即为梯度下降。...因此这里可以引入一个loss(损失)的概念,将方程转化为loss = (y - x**2 * sin(x))**2,这时再对loss进行求导即可使方程转化为求计算梯度求极值的问题。...但在实际计算过程中,无法确切知道具体的函数参数。因此我们假设存在loss的形式如下: ? 式中WX+b为预测的y值,后面的y为y的真实值。...对预测y值进行迭代计算,总计算值再做平均计算即可算出总误差值。 定义计算误差值的函数。...total_error / float(len(sets)) # 返回累加出的平方和的均值 随后需要对各函数的梯度值进行计算, ?
Week_05_Lec_03_Code.m I = imread('circuit.tif'); rotI = imrotate(I, 33, 'crop')...
这里介绍两种常见的loss函数类型。 (1)Mean squared error(均方差, mse) mse的求解式为:,即y减去y预测值的平方和。...使用代码详解 在自动求导中, import torch # 假设构建的是 pred = x*w + b的线性模型 # 另x初始化为1,w为dim=1、值为2的tensor,b假设为0 x = torch.ones...不知道w需要求导信息,因此在进行求导时会报错。...因此在进行此类计算时必须要对需要求到的参数进行更新。更新代码为:.requires_grad_() 注意后面的_是进行了repalce(替换)操作。...(mse, [w])) 输出为 (tensor([2.]),) 以后在设置需要求导的参数时,直接在创建tensor时,即加入requires_grad=True即可 x = torch.ones(1)
梯度检查点 在反向传播算法中,梯度计算从损失函数开始,计算后更新模型权重。图中每一步计算的所有导数或梯度都会被存储,直到计算出最终的更新梯度。这样做会消耗大量 GPU 内存。...梯度检查点通过在需要时重新计算这些值和丢弃在进一步计算中不需要的先前值来节省内存。 让我们用下面的虚拟图来解释。 上面是一个计算图,每个叶节点上的数字相加得到最终输出。...通过执行这些操作,在计算过程中所需的内存从7减少到3。 在没有梯度检查点的情况下,使用PyTorch训练分类模型 我们将使用PyTorch构建一个分类模型,并在不使用梯度检查点的情况下训练它。...modules是神经网络层的列表,按它们执行的顺序排列。 segments是在序列中创建的段的个数,使用梯度检查点进行训练以段为单位将输出用于重新计算反向传播期间的梯度。本文设置segments=2。...使用梯度检查点进行训练,如果你在notebook上执行所有的代码。
#include "widget.h" #include "ui_widget.h" #include <QPushButton> #include <QDeb...
本文介绍旷视研究院的一个新成果,通过在激活函数领域进行创新,提出一种在视觉任务上大幅超越ReLU的新型激活函数Funnel activation(FReLU),简单又高效。 ?...、视觉识别、CNN 具体而言,旷视研究院通过增加可忽略的空间条件开销将ReLU和PReLU扩展为2D激活函数。...ReLU和PReLU分别表示为y = max(x,0)和y = max(x,px)的形式,而FReLU的形式为y = max(x,T(x)),其中T(·)是二维空间条件(2D spatial condition...此外,空间条件以简单的方式实现了像素级建模能力,并通过常规卷积捕获了复杂的视觉layouts。...最后,对ImageNet数据集、COCO数据集检测任务和语义分割任务进行了实验,展示了FReLU激活函数在视觉识别任务中的巨大改进和鲁棒性。 ? ?注明:地区+学校/企业+研究方向+昵称
刚刚拜读了一本书, 《图灵的秘密》. 该书介绍了图灵的论文《论可计算数及其在判定上的应用》, 其指出: 一个拥有铅笔, 纸和一串明确指令的人类计算者, 可以被看做是一种图灵机. 那么图灵机是什么呢?...先来介绍一下在计算 时涉及的数学知识. 首先, 一定是介于1-2之间的一个小数. 二进制的 前十位是: 1.011. 如何确定下一位是0还是1呢?...而图灵在计算时, 使用了稍有不同的方法进行乘法计算, 在运算中维护一个过程和, 每一位的相乘结果加到这个过程和中....为了下一次计算的时候, 能够将结果加到对应的位置上, 就是下一次相乘结果的相加位要向后一格, 在做加一操作的时候, 只识别r, u, 所以之后的标识符还需要重置....在结尾打印两个字符 状态 下一个状态 pe2(S, a, b) pe(pe(S, b), a) 直接先在结尾打印 a, 然后在在结尾打印 b 增强 find 函数 f 函数在找到所需字符后, 将扫描格向左或向右移动
Profile代码编写 上一节明确了,我们需要加速RWKV模型中rwkv6_linear_attention_cpu的计算,https://github.com/sustcsonglin/flash-linear-attention...这个库在2024年4月份支持了RWKV6模型,它加速RWKV 6 Linear Attention计算的核心api有两个,fused_recurrent_rwkv6和chunk_rwkv6。...函数进行计算时Kernel部分花了1105us,算子总的时间花了21.5ms,然后它的kernel分布为: 我们可以发现在kernel里面只有gemv相关的矩阵乘调用,并且elementwise算子占比非常大已经接近...Triton实现的版本在编译中发生了什么,但真的找到了放弃cuda的理由,毕竟不是专业做这个东西的,而Triton大家都可以写),后续应该会考虑在Triton kernel的基础上继续做优化以及训练性能验证...因此,grid 的大小将是 (4, 4, 16),相当于有256个Block在并行计算,而每个Block的内部目前Triton的Kernel中指定的是1个warp也就是32个进程来计算。
在上一篇文章当中我们简单介绍了感知机和神经网络的一个关系,对神经网络有了一个粗浅的理解。其实神经网络并没有大家想的那么难,每个神经元之间的数据传输以及计算方式都是确定的。...损失函数 在早年的时候,深度学习这个概念并没有从机器学习当中单独拆分出来,神经网络也是机器学习模型的一种,也是一个部分。只是后来由于神经网络在很多方面的表现非常出色,远远胜过了传统模型。...那么求梯度就是必须的,大家可能会感到疑惑,我们数学上来求导求梯度是非常方便的,但是在程序当中我们如何实现这个功能呢?...导数求出来了,梯度自然也就好求了,梯度本质上的定义其实是函数对于各个变量偏导组成的向量。比如我们的样本是 ,在这一点的梯度就是 。...由于整个函数成一个类似马鞍的形状, 所以这个局部最优点称为鞍点。 比如在下图当中,红色点的部分各个方向的梯度均为0,但是它显然不是函数的最低点。但是通过梯度下降法到达这个点之后就无法再进行更新了。
Web 上的数据接口以 restful 和 WebService 为主,格式通常是多层的 Json 和 XML。多层数据可承载更通用更丰富的信息,但结构上比传统的二维数据复杂,计算难度也更大。...DataFrame 不是专为多层数据设计的,遇到复杂计算时代码也难写;Scala Spark 在集成性方面好一些,但架构沉重,学习难度也大。...Web上的计算引擎,还有一个更好的选择:esProc SPL。...在 SPL IDE 中点击 A1 格可以看到序表的多层结构,其中,EId、State 等字段存储简单数据类型,Orders 字段存储记录集合(二维表)。...强大的计算能力对于解析后的序表,SPL 提供了丰富计算函数,可以轻松完成日常的 SQL 式计算。
本小节主要介绍梯度的调试,应用梯度下降法最主要的就是计算梯度,但很有可能计算梯度程序没有错但是求得的梯度是错误的,这个时候就需要使用梯度调试的方式来发现错误。...一 梯度的调试 前几个小节介绍了什么是梯度下降法,在使用梯度下降法的过程中最重要的就是求出定义的损失函数在某一个参数θ上的梯度值。...但是在计算机实际实现的时候,完全可以取一个特别小的值来真正的把这两个点他们连线的斜率给算出来,然后作为红色点导数的一个取代值,这种计算方法也是非常容易,其实就是这两个蓝色点在纵方向的差除上横方向的差,相应的我们可以写出下面的式子...,如果J的复杂度非常高的话,每求一次梯度都将消耗非常多的时间,也正因为如此,这种方法作为调试的手段,也就是说我们还没有完成我们算法的时候,可以在取出的小数据量上使用这种调试梯度的方法得到最终的结果,那么我们就可以知道这个结果肯定是对的...: 先使用dJ_dubug这个函数作为梯度的求法,通过这个方式先得到机器学习算法正确的结果; 然后推导公式求出来这个梯度计算相应的数学解; 之后将我们实现的数学解代入机器学习算法中,可以通过最终得到的结果和使用
计算函数的周期: FunctionPeriod
大家好,又见面了,我是你们的朋友全栈君。如 欧拉函数 1. 定义 什么是欧拉函数? 任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?...(比如,在1到8之中,有多少个数与8构成互质关系?) 计算这个值的方法就叫做欧拉函数,用φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。 2....计算 欧拉函数计算公式 这个p是什么呢?...大致的几步 找到因子 将把(1- 1/p)转换为(p - 1) / p 然后把相同的因子筛去 int euler(int n) { int ans = n; for (...,欧拉函数公式的推导过程可以参考维基百科:欧拉函数 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/172050.html原文链接:https://javaforall.cn
, 输入预处理(feature scaling等) 初始化网络weight和bias 前向传播,得到网络输出 计算损失函数,得到当前损失 反向传播,根据链式法则,逐层回传得到损失函数对当前参数的偏导,根据梯度下降算法对当前参数进行更新...损失函数收敛至极小值时,梯度为0(接近0),损失函数不再下降。我们不希望在抵达极小值前,梯度就为0了,也不希望下降过程过于震荡,甚至不收敛。...由上一节的分析可知,在梯度(偏导)计算中,主要的影响因素来自激活函数的偏导、当前层的输入(前一层的输出)、以及权重的数值等,这些因子连续相乘,带来的影响是指数级的。...训练阶段,权重在不断调整,每一层的输入输出也在不断变化,梯度消失和梯度爆炸可能发生在训练的一开始、也可能发生在训练的过程中。 因子项中当前层的输入仅出现一次,下面着重看一下激活函数和权重的影响。...所以,一个改善方向是选择更好的非线性激活函数,比如ReLU,相关激活函数如下图所示, ? ReLU只在负方向上存在饱和区,正方向上的导数均为1,因此相对更少地遭遇梯度消失,但梯度爆炸现象仍然存在。
领取专属 10元无门槛券
手把手带您无忧上云