首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在采样截断正态时,R中rtmvnorm()中的错误答案

在R中,rtmvnorm()函数并不用于采样截断正态分布。该函数实际上用于从多元t分布中采样,而不是截断正态分布。

如果要在R中采样截断正态分布,可以使用其他函数,例如truncnorm::rtruncnorm()或truncnorm::rtruncnorm2()。这些函数可以根据给定的截断范围、均值和标准差来生成截断正态分布的随机样本。

以下是对truncnorm包中rtruncnorm()函数的简要介绍:

  • 概念:rtruncnorm()函数用于生成截断正态分布的随机样本。截断正态分布是指在给定的上下界范围内,正态分布的概率密度函数被截断。
  • 分类:rtruncnorm()函数属于概率统计学中的随机抽样方法。
  • 优势:rtruncnorm()函数可以方便地生成符合指定截断范围的随机样本,适用于需要模拟截断正态分布的场景。
  • 应用场景:rtruncnorm()函数可以应用于金融风险模型、统计建模、蒙特卡洛模拟等领域,其中需要考虑正态分布的截断情况。
  • 推荐的腾讯云相关产品和产品介绍链接地址:由于该问题与云计算领域无关,因此无法提供腾讯云相关产品和链接地址。

请注意,以上是对截断正态分布采样的一般性介绍,具体使用时应根据实际需求和数据特点进行调整。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

想知道机器学习掌握的怎么样了吗?这有一份自测题(附答案和解析)

人类对于自动化和智能化的追求一直推动着技术的进步,而机器学习这类型的技术对各个领域都起到了巨大的作用。随着时间的推移,我们将看到机器学习无处不在,从移动个人助理到电子商务网站的推荐系统。即使作为一个外行,你也不能忽视机器学习对你生活的影响。 引言 本次测试是面向对机器学习有一定了解的人。参加测试之后,参与者会对自己的机器学习方面知识有更深刻的认知。 目前,总共有 1793 个参与者参与到了测试中。一个专门为机器学习做的测试是很有挑战性的,我相信你们都已经跃跃欲试,所以,请继续读下去。 那些错过测试的人,

012

随机振动 matlab,Matlab内建psd函数在工程随机振动谱分析中的修正方法「建议收藏」

随机信号的功率谱分析是一种广泛使用的信号处理方法,能够辨识随机信号能量在频率域的分布,同时也是解决多种工程随机振动问题的主要途径之一.Matlab作为大型数学分析软件,得到了广泛应用,目前已推出7.x的版本.Matlab内建了功能强大的信号处理工具箱.psd函数是Matlab信号处理工具箱中自功率谱分析的主要内建函数.Matlab在其帮助文件中阐述psd函数时均将输出结果直接称为powerspectrumdensity,也即我们通常所定义的自功率谱.实际上经分析发现,工程随机振动中功率谱标准定义[1]与Matlab中psd函数算法有所区别,这一点Matlab的帮助文档没有给出清晰解释.因此在使用者如没有详细研究psd函数源程序就直接使用,极易导致概念混淆,得出错误的谱估计.本文详细对比了工程随机振动理论的功率谱定义与Matlab中psd函数计算功率谱的区别,并提出用修正的psd函数计算功率谱的方法,并以一组脉动风压作为随机信号,分别采用原始的psd函数与修正后的psd函数分别对其进行功率谱分析,对比了两者结果的差异,证实了本文提出的修正方法的有效性.1随机振动相关理论1.1傅立叶变换求功率谱理论上,平稳随机过程的自功率谱密度定义为其自相关函数的傅立叶变换:Sxx()=12p+-Rxx(t)eitdt(1)其中,S(xx)()为随机信号x(t)的自功率谱密度,Rxx(t)为x(t)的自相关函数.工程随机振动中的随机过程一般都是平稳各态历经的,且采样信号样本长度是有限的,因此在实用上我们采用更为有效的计算功率谱的方法,即由时域信号x(t)构造一个截尾函数,如式(2)所示:xT(t)=x(t),0tT0,其他(2)其中,t为采样时刻,T为采样时长,x(t)为t时刻的时域信号值.由于xT(t)为有限长,故其傅立叶变换A(f,T)以及对应的逆变换存在,分别如式(3)、(4)所示:A(f,T)=+-xT(t)e-i2pftdt(3)xT(t)=+-A(f,T)ei2pftdt(4)由于所考虑过程是各态历经的,可以证明:Sxx(f)=limT1TA(f,T)2(5)在实际应用中,式(5)是作功率谱计算的常用方法.1.2功率谱分析中的加窗和平滑处理在工程实际中,为了降低工程随机信号的误差,一般对谱估计需要进行平滑处理.具体做法为:将时域信号{x(t)}分为n段:{x1(t)},{x2(t)},…,{xn-1(t)},{xn(t)},对每段按照式(5)求功率谱Sxixi(f),原样本的功率谱可由式(6)求得:Sxx(f)=1nni=1Sxixi(f)(6)如取一样本点为20480的样本进行分析,将样本分割为20段进行分析,每段样本点数为1024.将每段1024个样本点按照式(5)的方法分别计算功率谱后求平均,即可得到经过平滑处理的原样本的功率谱,这样计算出的平滑谱误差比直接计算要降低很多.另一方面,由于实际工程中随机信号的采样长度是有限的,即采样信号相当于原始信号的截断,即相当于用高度为1,长度为T的矩形时间窗函数乘以原信号,导致窗外信息完全丢失,引起信息损失.时域的这种信号损失将会导致频域内增加一些附加频率分量,给傅立叶变换带来泄漏误差.构造一些特殊的窗函数进行信号加窗处理可以弥补这种误差,即构造特殊的窗函数{u(t)},用{u(t)}去乘以原数据,对{x(t)u(t)}作傅立叶变换可以减少泄漏:Aw(f,T)=+-u(t)xT(t)e-i2pftdt(7)其中,Aw(f,T)为加窗后的傅立叶变换.u(t)xT(t)实际上是对数据进行不等加权修改其结果会使计算出

01

不得不学的统计学基础知识(一)

统计学是数据分析必须掌握的基础知识,它是通过搜索、整理、分析、描述数据等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。统计学用到了大量的数学及其它学科的专业知识,其应用范围几乎覆盖了社会科学和自然科学的各个领域,而在数据量极大的互联网领域也不例外,因此扎实的统计学基础是一个优秀的数据分析师必备的技能。统计学的知识包括了图形信息化、数据的集中趋势、概率计算、排列组合、连续型概率分布、离散型概率分布、假设检验、相关和回归等知识,对于具体的知识点,楼主就不一一介绍了,感兴趣的同学请参考书籍《深入浅出统计学》、《统计学:从数据到结论》,今天的分享主要会选取统计学中几个容易混淆的、比较重要的知识点进行分享。

03

Nat. Mach. Intell. | 使用多尺度深度生成模型进行特定状态的蛋白质-配体复合体结构预测

今天为大家介绍的是来自Animashree Anandkumar团队的一篇论文。由蛋白和小分子构成的结合复合物是普遍存在的,对生命至关重要。尽管近年来蛋白质结构预测技术有了显著进展,现有算法仍未能系统地预测配体结构及其对蛋白质折叠的调控效应。为了解决这一差异,作者提出了一种名为NeuralPLexer的计算方法,能够仅通过蛋白质序列和配体分子图直接预测蛋白质-配体复合物结构。NeuralPLexer采用深度生成模型,按原子分辨率抽样结合复合物的三维结构及其构象变化。该生成模型基于扩散过程,整合了基本的生物物理限制和多尺度几何深度学习系统,以层次化方式迭代抽样残基级接触图和所有重原子坐标。与所有现有方法相比,NeuralPLexer在蛋白质-配体盲对接(blind protein-ligand docking)和柔性结合位点结构复原(flexible binding-site structure recovery)的基准测试上实现了最先进的性能。此外,由于其在采样配体自由态和配体结合态集合方面的特异性,NeuralPLexer在全局蛋白质结构预测准确性上一致超过AlphaFold2,无论是在具有大构象变化的代表性结构对还是在最近确定的配体结合蛋白上。NeuralPLexer的预测与酶工程和药物发现中重要靶标的结构测定实验相一致,显示出其在加速设计功能性蛋白质和小分子药物的潜力,有望在蛋白组学规模上实现。

01
领券