数据科学就是关于数据的。它是任何数据科学或机器学习项目的关键。在大多数情况下,当我们从不同的资源收集数据或从某处下载数据时,几乎有95%的可能性我们的数据中包含缺失的值。...在这个文章中,我将分享处理数据缺失的9种方法,但首先让我们看看为什么会出现数据缺失以及有多少类型的数据缺失。 ? 不同类型的缺失值 缺失的值主要有三种类型。...Age包含所有整数值,而Cabin包含所有分类值。 1、均值、中值、众数替换 在这种技术中,我们将null值替换为列中所有值的均值/中值或众数。...然后更改索引,并将其替换为与NaN值相同的索引,最后将所有NaN值替换为一个随机样本。...5、任意值替换 在这种技术中,我们将NaN值替换为任意值。任意值不应该更频繁地出现在数据集中。通常,我们选择最小离群值或最后离群值作为任意值。
NaN是“Not a Number”的缩写,用于表示缺失值或无效数据。在训练机器学习模型时,NaN值会导致算法无法正常工作,因此需要在数据预处理阶段进行处理。 2....解决方案: 数据类型转换:确保所有数据类型正确,避免在转换过程中产生NaN值。...A1:NaN值通常由数据采集过程中的错误或缺失导致,也可能在数据类型转换过程中产生。 Q2:应该选择删除还是填充NaN值? A2:这取决于数据集的具体情况。...通过这些方法,大家可以有效应对数据预处理中的NaN值问题,确保机器学习模型的稳定性和准确性。 未来展望 随着数据科学技术的不断进步,数据预处理工具和技术将更加完善。...参考资料 Scikit-learn 官方文档 Pandas 官方文档 处理缺失数据 大家好,我是默语,擅长全栈开发、运维和人工智能技术。如果你有任何问题或建议,欢迎在评论区留言。
像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。本节我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。...后面的章节将介绍更多的数据预处理技术。 一、读取数据集 举一个例子,我们首先创建一个人工数据集,并存储在CSV(逗号分隔值)文件../data/house_tiny.csv中。...为了处理缺失的数据,典型的方法包括插值法和删除法,其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。在这里,我们将考虑插值法。 ...通过位置索引iloc,我们将data分成inputs和outputs,其中前者为data的前两列,而后者为data的最后一列。对于inputs中缺少的数值,我们用同一列的均值替换“NaN”项。...由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。
现在可以看到出版时间是int类型的,它的值在0-2050之间。由于这个数据集是在2004年建立的,我假设2006年以后的所有年份都是无效的,保持两年的差值,以防数据集可能已被更新。...对于所有无效条目(包括0),我将它们转换为NaN,然后用剩余年份的平均值替换它们。 ?...出版商 在“发布者”专栏中,我已经处理了两个NaN值,将其替换为'other',因为在某些检查后无法推断出版商的名称。 ? 用户数据集 现在我们探索用户数据集,首先检查它的大小,前几列和数据类型。...年龄 在检查值时,userID看起来是正确的。然而,年龄栏有一个NaN和一些非常高的值。在我看来,5岁以下和90岁以上的年龄没有太大意义,因此,这些会被NaN取代。...然后所有的NaN都被平均年龄取代,其数据类型被设置为int。 ? 我在这里没有对位置列进行任何处理。
现在可以看到出版时间是int类型的,它的值在0-2050之间。由于这个数据集是在2004年建立的,我假设2006年以后的所有年份都是无效的,保持两年的差值,以防数据集可能已被更新。...对于所有无效条目(包括0),我将它们转换为NaN,然后用剩余年份的平均值替换它们。 ?...出版商 在“发布者”专栏中,我已经处理了两个NaN值,将其替换为'other',因为在某些检查后无法推断出版商的名称。 ?...用户数据集 ---- ---- 现在我们探索用户数据集,首先检查它的大小,前几列和数据类型。 ? 年龄 在检查值时,userID看起来是正确的。然而,年龄栏有一个NaN和一些非常高的值。...在我看来,5岁以下和90岁以上的年龄没有太大意义,因此,这些会被NaN取代。然后所有的NaN都被平均年龄取代,其数据类型被设置为int。 ? 我在这里没有对位置列进行任何处理。
数据预处理 尽管此步骤很大程度上取决于特定的数据和问题,但仍需要遵循两个必要的步骤: 摆脱Nan价值观: Nan(不是数字)表示数据集中缺少值。该模型不接受Nan值,因此必须删除或替换它们。...对于数字列,一种常见的处理这些值的方法是使用剩余数据的0,均值,中位数,众数或其他某种函数来估算它们。...缺失值有时可能表示数据集中的基础特征,因此人们经常创建一个新的二进制列,该列与具有缺失值的列相对应,以记录数据是否缺失。 对于分类列,Nan可以将值视为自己的类别!...标签编码所有分类列: 由于模型只能接受数字输入,因此将所有分类元素都转换为数字。这意味着使用数字代替使用字符串来表示类别。...已删除Name列,因为该列中的Nan值太多(缺少10k以上)。同样,在确定动物的结局方面,这似乎不是一个非常重要的特征。
判断缺失值 # 查看哪些值缺失 nan_all = df.isnull() # 获得所有数据框中的N值 print(nan_all) # 打印输出 # 查看哪些列缺失 nan_col1...() 方法来查找含有至少1个或全部缺失值的列,其中 any() 方法用来返回指定轴中的任何元素为 True,而 all() 方法用来返回指定轴的所有元素都为 True。...然后使用预处理对象的 fit_transform 方法对 df(数据框对象)进行处理,该方法是将 fit 和 transform 组合起来使用。...限于篇幅,不对所有方法做展开讲解。 另外,如果是直接替换为特定值的应用,也可以考虑使用Pandas的 replace 功能。...当列中含有极大值或极小值的 inf 或 -inf 时,会使得 mean() 这种方法失效,因为这种情况下将无法计算出均值。
如果任何因变量缺失数据的概率不取决于自变量的值,则使用成列删除的回归估计值将会是无偏误的。 缺点: 标准误通常较大。 如果数据不是MCAR而只是MAR,那么成列删除可能会产生有偏误的估计值。...与其相似的另一种方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,用于求平均的值并不是从数据集的所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。...条件组合完整化方法能够在一定程度上减小组合完整化方法的代价。在信息表包含不完整数据较多的情况下,可能的测试方案将巨增。...df.loc[df[to_fill].isnull(), to_fill] = y_pred return df 不处理缺失值 在数据预处理阶段,对于具有缺失值的数据记录不做任何处理,也是一种思路...这种思路主要看后期的数据分析和建模应用,很多模型对于缺失值有容忍度或灵活的处理方法,因此在预处理阶段可以不做处理。
任何时候,你都很可能最终还是使用到它们。这三个在使用 PYTHON 时最流行的库就是 Numpy、Matplotlib 和 Pandas。...多尝试一些不同的填充策略。也许在某些项目中,你会发现,使用缺失值所在列的中位数或众数来填充缺失值会更加合理。填充策略之类的决策看似细微,但其实意义重大。...「:」表示希望提取所有行的数据,0 表示希望提取第一列) 这就是将第一列中的属性变量替换为数值所需的全部工作了。例如,麋鹿将用 0 表示,狗将用 2 表示,猫将用 3 表示。...缩放特征将仍能够加速模型,因此,你可以在数据预处理中,加入特征缩放这一步。 特征缩放的方法有很多。但它们都意味着我们将所有的特征放在同一量纲上,进而没有一个会被另一个所主导。...这是一个具有明确相关值的分类问题。但如果其取值范围非常大,那么答案是你需要做缩放。 恭喜你,你已经完成了数据预处理的工作! 通过少量的几行代码,你已经领略了数据清洗和预处理的基础。
数据探索和预处理是任何数据科学或机器学习工作流中的重要步骤。在使用教程或训练数据集时,可能会出现这样的情况:这些数据集的设计方式使其易于使用,并使所涉及的算法能够成功运行。...如果丢失的数据是由数据帧中的非NaN表示的,那么应该使用np.NaN将其转换为NaN,如下所示。...通常,缺失的值可能被视为没有贡献任何信息,但如果仔细分析,可能有潜在的故事。...右上角表示数据帧中的最大行数。 在绘图的顶部,有一系列数字表示该列中非空值的总数。 在这个例子中,我们可以看到许多列(DTS、DCAL和RSHA)有大量的缺失值。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。
) # 训练集结果 1.2.2 One-hot Encoding 独热编码 Scikit-learn中也提供来独热编码函数,其可以将具有n_categories个可能值的一个分类特征转换为n_categories...个二进制特征,其中一个为1,所有其他为0在category_encoders中,它包含了附加功能,即指示缺失或未知的值。...5列 # 哈希编码结果与训练集/测试集中的内容无关 # 只要列名匹配,我们就可以在任何新数据集上使用哈希编码方法 # 编码结果仅由哈希函数确定 # 通常哈希编码应用于更高和更稀疏的维空间,这里以两个变量作为哈希编码的例子...对于分类问题:将类别特征替换为给定某一特定类别值的因变量后验概率与所有训练数据上因变量的先验概率的组合。...对于连续目标:将类别特征替换为给定某一特定类别值的因变量目标期望值与所有训练数据上因变量的目标期望值的组合。该方法严重依赖于因变量的分布,但这大大减少了生成编码后特征的数量。
01 数据获取 ---- 我们的数据来源是“人人车”二手车网站,通过Python爬虫获取291个城市所有在售二手车详细数据。...】 数据的许多列包含大量的空值和单一数据,当这些数据超过一定量时,对模型来说是无效的,因此先将这一部分数据进行删除。...剔除这些列中的异常数据,并且为空值进行填充,可以使用平均值或众数进行填充。...data.drop(date_col, axis=1, inplace=True 【Step 5:二值型数据处理】 许多列的数据要么为"有",要么为"无"。...方法,直接将想要转换成独热编码额数据进行转换 one_hot_data = pd.get_dummies(data[one_hot_col_names]) # 合并独热编码数据,并删除之前的列 data
它提供了许多的函数和方法,可加快数据分析和预处理步骤。今天介绍的这些示例将涵盖您可能在典型的数据分析过程中使用的几乎所有函数和方法。...我们可以使用特定值,聚合函数(例如均值)或上一个或下一个值。 对于Geography列,我将使用最常见的值。 ?...8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...例如,thresh = 5表示一行必须具有至少5个不可丢失的非丢失值。缺失值小于或等于4的行将被删除。 DataFrame现在没有任何缺失值。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。
这些缺失值可能是由于数据收集过程中的错误、设备故障或其他原因导致的。在Pandas中,缺失值通常用NaN(Not a Number)表示。2....处理缺失值的方法3.1 删除缺失值删除缺失值是最直接的方法,可以通过以下两种方式实现:dropna():删除包含缺失值的行或列。- `axis=0`:删除包含缺失值的行(默认)。...常见问题及解决方案4.1 数据类型不一致在处理缺失值时,有时会遇到数据类型不一致的问题。例如,某个列的数据类型应该是整数,但由于缺失值的存在,Pandas会将其自动转换为浮点数。...解决方案在填充缺失值后,可以使用astype()方法将数据类型转换回原来的类型。...如果你有任何问题或建议,欢迎留言交流。
任何时候,你都很可能最终还是使用到它们。这三个在使用 PYTHON 时最流行的库就是 Numpy、Matplotlib 和 Pandas。...多尝试一些不同的填充策略。也许在某些项目中,你会发现,使用缺失值所在列的中位数或众数来填充缺失值会更加合理。填充策略之类的决策看似细微,但其实意义重大。...「:」表示希望提取所有行的数据,0 表示希望提取第一列) 这就是将第一列中的属性变量替换为数值所需的全部工作了。例如,麋鹿将用 0 表示,狗将用 2 表示,猫将用 3 表示。...缩放特征将仍能够加速模型,因此,你可以在数据预处理中,加入特征缩放这一步。 特征缩放的方法有很多。但它们都意味着我们将所有的特征放在同一量纲上,进而没有一个会被另一个所主导。...这是一个具有明确相关值的分类问题。但如果其取值范围非常大,那么答案是你需要做缩放。 恭喜你,你已经完成了数据预处理的工作! ?
这是对提高性能的补充,后者侧重于加快适���内存的数据集的分析。 加载更少的数据 假设我们在磁盘上的原始数据集有许多列。...加载更少的数据 假设我们在磁盘上的原始数据集有许多列。...这些数据结构不一定是典型的“大部分为 0”的稀疏数据。相反,您可以将这些对象视为“压缩的”,其中任何与特定值匹配的数据(NaN / 缺失值,尽管可以选择任何值,包括 0)都被省略。...该方法需要具有两个或更多级别的MultiIndex。...该方法需要具有两个或更多级别的 MultiIndex。
导读:Pandas是日常数据分析师使用最多的分析和处理库之一,其中提供了大量方便实用的数据结构和方法。但在使用初期,很多人会不知道: 1.它能提供哪些功能? 2.我的需求应该用哪个方法?...1 b Trueiloc[m:n,j:k]选择行索引在m到n且列索引在j到k间的记录In: print(data2.iloc[0:2,0:1]) Out: col1 0...2 1 1选取行索引在[0:2)列索引在[0:1)中间的记录,行索引不包含2,列索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名为列名1、列名2的记录...1筛选数据中col2值为b的记录 5 数据预处理操作 Pandas的数据预处理基于整个数据框或Series实现,整个预处理工作包含众多项目,本节列出通过Pandas实现的场景功能。...常用高级函数 方法用途示例示例说明map将一个函数或匿名函数应用到Series或数据框的特定列In: print(data2['col3'].map(lambda x:x*2)) Out: 0
在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清理、转换和重新排列。这些任务通常被报告为占据分析师 80%或更多的时间。有时,文件或数据库中存储数据的方式并不适合特定任务。...您可能希望删除所有 NA 的行或列,或者仅删除包含任何 NA 的行或列。...如果 DataFrame 中的一列有k个不同的值,您将得到一个包含所有 1 和 0 的k列的矩阵或 DataFrame。...具有大量字符串数据的数据集在计算上是昂贵的,并且使用了大量内存。 一些数据类型,如时间间隔、时间增量和带时区的时间戳,如果不使用计算昂贵的 Python 对象数组,将无法有效支持。...,并将任何区域特定的可变字符组合转换为一个通用的可比较形式 ljust, rjust 分别左对齐或右对齐;用空格(或其他填充字符)填充字符串的对侧,以返回具有最小宽度的字符串 正则表达式 正则表达式提供了一种灵活的方式来在文本中搜索或匹配
领取专属 10元无门槛券
手把手带您无忧上云