Word 这种文本编辑器你平时应该经常用吧,那你有没有留意过它的拼写检查功能呢?一旦我们在 Word 里输入一个错误的英文单词,它就会用标红的方式提示“拼写错误”。Word 的这个单词拼写检查功能,虽然很小但却非常实用。你有没有想过,这个功能是如何实现的呢?
输入一个错误的英文单词,它就会提示“拼写错误”。这个单词拼写检查功能,虽然很小但却非常实用。是如何实现的呢?
三目运算符,即a>b?a:b类型的,很多时候适当的使用三目运算符可以使得代码更简洁有序,减小代码的复杂程度,接下来的例子就可以很明显的展示三目运算符的作用
索引对于接触过数据库的人,都不会很陌生,但是说实话,也不一定很熟悉。先来介绍下索引的优点。 提高性能 现在有一个数据库表[Words],有[WordID],[WordPage],[[WordName],[WordPronunciation] ,[WordMeaning],[WordSentence]五个列,假设有上万条记录。 现在,使用查询语句找到“boyce”的详细信息,使用语句 1: SELECT * FROM [Words] 2: WHERE [WordName] = 'boyce
原文链接:https://rumenz.com/rumenbiji/linux-grep.html
通配符是shell在做PathnameExpansion时用到的。说白了一般只用于文件名匹配,它是由shell解析的,比如find,ls,cp,mv等。
grep (global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。用于过滤/搜索的特定字符。可使用正则表达式能配合多种命令使用,使用上十分灵活。
散列函数相关的应用非常广,例如webpack打包时在文件名中添加的哈希值,将给定信息转换为固定位数字符串的加密信息等都是散列的实际应用,感兴趣的读者可以自行搜索加密,摘要算法相关关键词进行学习。
点号(.)在正则表达式中具有特殊意义,它可以代表任何字符。我们把像点号(.)这类在正则表达式中具有特殊意义的字符称为元字符(Metacharacter),正因为有了它们才成就了正则表达式强大的模糊匹配能力。
全文搜索(FTS)是搜索引擎用于在数据库中查找结果的技术。它可用于为商店,搜索引擎,报纸等网站上的搜索结果提供支持。
今天小鹿就早早起床开始正准备更新今日的文章,我熟练的敲打着键盘,突然出现了下面的情况:
首先来对比一下通用的查找算法和字符串查找算法: 各种字符串查找算法的性能特点 算法(数据结构) 优点 二叉查找树(BST) 适用于随机排列的键 2-3树查找(红黑树) 有性能保证 线性探测法(并行数组) 内置类型,缓存散列值 R向单词查找树 适用于较短键和较小的字母表 三向单词查找树 适用于非随机的键 如果空间足够,R向单词查找树的速度是最快的,能够在常数次次数比较内完成查找。对于大型字母表,R向单词查找树所需空间可能无法满足时,三向单词查找树是最佳选择,因为它对字符比较次数是对数级别的,而二叉查找树中键
Atom中的文本选择支持很多操作,比如区域选择、缩进和一些查找操作, 以及用引号或者括号把文字括起来之类的标记操作。
VSCode 全称 Visual Studio Code,是微软出的一款轻量级代码编辑器,免费、开源而且功能强大。它支持几乎所有主流的程序语言的语法高亮、智能代码补全、自定义热键、括号匹配、代码片段、代码对比 Diff、GIT 等特性,支持插件扩展,并针对网页开发和云端应用开发做了优化。软件跨平台支持 Win、Mac 以及 Linux
散列表是一种由数组演变而来的一种数据结构,利用数组下标随机访问的特性实现快速访问。
◆VLOOKUP函数是Excel中的一个纵向查找函数,函数中的V为单词Vertical(垂直的)的缩写,LOOKUP即为查找的意思。在表格中,纵向的我们叫列,顾名思义,纵向查找即为按列查找,最终返回所需查询列对应的值。
全文搜索(FTS)是搜索引擎用于在数据库中查找结果的技术。您可以使用它来为商店、搜索引擎、报纸等网站上的搜索结果提供支持。
,根据向量表示 man 和 woman 的主要差异在性别 Gender 上,而 king 和 queen 的主要差异也是在 Gender 上。
Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。 grep的工作方式是这样的,它在一个或多个文件中搜索字符串模板。如果模板包括空格,则必须被引用,模板后的所有字符串被看作文件名。搜索的结果被送到标准输出,不影响原文件内容。 grep可用于shell脚本,因为grep通过返回一个状态值来说明搜索的状态,如果模板搜索成功,则返回0
Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。
如果将数据放入磁盘中,由于指令的执行速度远远超过磁盘的读写速度,因此控制运行时间的几乎都是磁盘访问次数。那么写一个复杂的程序来将磁盘访问次数降低到一个很小的常数是很有意义的。 B-Tree:所有的数据项都存储在树叶上,每一个叶子节点都包含指向下一个叶子节点的指针,从而方便叶子节点的范围遍历。B-Tree通常意味着所有的值都是按顺序存储的,并且每一个叶子页(每个叶子页包含多个树叶)到根的距离相同,很适合查找范围数据。( InnoDB使用的是B+Tree)
MySQL是一种结构化查询语言,用于管理关系型数据库系统。在大型数据库中,索引是优化数据访问和查询速度的重要工具。本文将围绕MySQL索引优化模块,介绍索引结构、索引建立依据以及索引最终效果等方面的内容。
引言:本文的练习整理自网络。多练习,这是我们从小就在使用的学习方法。在练习的过程中,认真思考,不断尝试,以此来磨练自己的公式与函数应用技能,也让研究Excel的大脑时刻保持着良好的状态。同时,想想自己怎么解决这个问题,看看别人又是怎样解决的,从而快速提高Excel公式应用水平。
FULLTEXT(全文)索引,仅可用于MyISAM和InnoDB,针对较大的数据,生成全文索引非常的消耗时间和空间。对于文本的大对象,或者较大的CHAR类型的数据,如果使用普通索引,那么匹配文本前几个字符还是可行的,但是想要匹配文本中间的几个单词,那么就要使用LIKE %word%来匹配,这样需要很长的时间来处理,响应时间会大大增加,这种情况,就可使用时FULLTEXT索引了,在生成FULLTEXT索引时,会为文本生成一份单词的清单,在索引时及根据这个单词的清单来索引。FULLTEXT可以在创建表的时候创建,也可以在需要的时候用ALTER或者CREATE INDEX来添加:
看到同组大佬都不用鼠标的。。。而且写文件、查找翻页什么的 比我用鼠标快多了,那熟练的快捷键看的我一愣一愣的
vim是一个文本编辑神器, 长时间没用生疏了,这篇文章整理了一下vim常用操作和快捷键
单词-文档矩阵是表达两者之间所具有的一种包含关系的概念模型,图3-1展示了其含义。图3-1的每列代表一个文档,每行代表一个单词,打对勾的位置代表包含关系。
输入重定向是指把文件导入到命令中,而输出重定向则是把原本要输出到屏幕的数据信息写入到指定文件中。
简介 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来。grep全称是Global Regular Expression Print,表示全局正则表达式版本,它的使用权限是所有用户。 grep的工作方式是这样的,它在一个或多个文件中搜索字符串模板。如果模板包括空格,则必须被引用,模板后的所有字符串被看作文件名。搜索的结果被送到标准输出,不影响原文件内容。 grep可用于shell脚本,因为grep通过返回一个状态值来说明搜索的状态,如果模板搜索成功,则
Linux中的三个命令awk、sed、grep在业界被称为“三剑客”,grep擅长查找,sed擅长取行和替换,awk擅长运算。
在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合(实际上在搜索引擎索引库中,关键词也已经转换为关键词ID)。例如“文档1”经过分词,提取了20个关键词,每个关键词都会记录它在文档中的出现次数和出现位置
点击上方蓝色字体,选择“设为星标” 回复”学习资料“获取学习宝典 我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多,例如,搜索引擎需要根基用户数据的关键字进行全文查找,电子商务网站需要根据用户的查询条件,在可能需要在商品的详细介绍中进行查找,这些都不是B+树索引能很好完成的工作。 通过数值比较,范围过滤等就可以完成绝大多数我们需要的查询了。但是,如果希望通过关键字的匹配来进行查询过滤,那么就需要基于相似度的查询,而不是原来的精确数
我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多。
给你一个字符串 s。请你按照单词在 s 中的出现顺序将它们全部竖直返回。 单词应该以字符串列表的形式返回,必要时用空格补位,但输出尾部的空格需要删除(不允许尾随空格)。 每个单词只能放在一列上,每一列中也只能有一个单词。
上半周,我们发布了 Android 9 Pie,这是 Android 的最新版本,它的机器学习应用使您的手机更简单易用。 Android 9 中有一项功能是 Smart Linkify,这是一种新的 API,可在文本中检测到某些类型的实体时添加可点击链接。 这个功能很有用,例如,当您从朋友的消息传递 app 中收到一个地址,想要在地图上查找时,如果使用 Smart Linkify-annotated 文本,它就变得容易多了!
给定一个 m x n 二维字符网格 board 和一个单词(字符串)列表 words, 返回所有二维网格上的单词 。
grep(global search regular expression(RE) and print out the line,全面搜索正则表达式并把行打印出来)是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹配的行打印出来。
对于某些计算问题而言,回溯法是一种可以找出所有(或一部分)解的一般性算法,尤其适用于约束满足问题(在解决约束满足问题时,我们逐步构造更多的候选解,并且在确定某一部分候选解不可能补全成正确解之后放弃继续搜索这个部分候选解本身及其可以拓展出的子候选解,转而测试其他的部分候选解)。
如果你是初学者,或者是自学者!你可以加小编微信(xxf960326)!小编可以给你学习上,工作上的一些建议以及可以给你(免费)提供学习资料!最重要我们还可以交个朋友!你在学习上有什么问题都可以加小编微信进行私聊!小编都会为你解答!
/home 普通用户的宿主目录,用户数据存放在其主目录中lib 存放必要 的运行库
在搜索引擎中每个文件都对应一个文件ID,文件内容被表示为一系列关键词的集合(实际上在搜索引擎索引库中,关键词也已经转换为关键词ID)。例如“文档1”经过分词,提取了20个关键词,每个关键词都会记录它在文档中的出现次数和出现位置。
点击关注公众号,Java干货及时送达 作者:沸羊羊 来源:juejin.cn/post/6989871497040887845 前言 我们都知道 InnoDB 在模糊查询数据时使用 "%xx" 会导致索引失效,但有时需求就是如此,类似这样的需求还有很多,例如,搜索引擎需要根基用户数据的关键字进行全文查找,电子商务网站需要根据用户的查询条件,在可能需要在商品的详细介绍中进行查找,这些都不是B+树索引能很好完成的工作。 通过数值比较,范围过滤等就可以完成绝大多数我们需要的查询了。但是,如果希望通过关键字的匹配
Tech 导读本文介绍了算法和数据结构的基础概念和复杂度函数,并提供了一些评价算法和数据结构优劣的方法论,之后又重点介绍了几种工作中常见且重要的数据结构和算法。作为系列文章的开篇,希望读者能够在理解复杂度函数的基础上,重点关注每一种数据结构的优劣势分析。 01前言 ES现在已经被广泛的使用在日常的搜索中,Lucene作为它的内核值得深入研究,比如FST,下面就用两篇分享来介绍一些本文的主题: 第一篇主要介绍数据结构和算法基础和分析方法,以及一些常用的典型的数据结构; 第二篇主要介绍图论,以及自动机,K
数据库索引是优化任何数据库系统性能的关键组成部分。如果没有有效的索引,您的数据库查询可能会变得缓慢且低效,从而导致用户体验不佳并降低生产力。在这篇文章中,我们将探讨创建和使用数据库索引的一些最佳实践。
机械硬盘的磁盘主体是一块金属薄片(也有用其他材料的),上面涂覆一层磁性材料,可以理解为一层小磁针。
本文转载自 https://www.cnblogs.com/zlslch/p/6440114.html
领取专属 10元无门槛券
手把手带您无忧上云