本文为 AI 研习社编译的技术博客,原标题 : Elmo Embeddings in Keras with TensorFlow hub 作者 | Jacob Zweig 翻译 | 胡瑛皓...编辑 | 酱番梨、王立鱼 原文链接: https://towardsdatascience.com/elmo-embeddings-in-keras-with-tensorflow-hub-7eb6f0145440...我们有时用Keras快速构建模型原型,这里只要少许改几个地方就能将Keras与Tensorflow hub提供的模型整合!...ELMo嵌入在很多NLP任务中的表现均超越了GloVe和Word2Vec嵌入的效果。 ?...test_text = np.array(test_text, dtype=object)[:, np.newaxis]test_label = test_df['polarity'].tolist() 在Keras
导读 在本文中,您将发现Keras和tf.keras之间的区别,包括TensorFlow 2.0中的新增功能。 万众期待的TensorFlow 2.0于9月30日正式发布。...在TensorFlow 2.0中,您应该使用tf.keras而不是单独的Keras软件包。...TensorFlow v1.10.0中引入了tf.keras子模块,这是将Keras直接集成在TensorFlow包本身中的第一步。...TensorFlow v1.10是TensorFlow的第一个版本,在tf.keras中包含了一个keras分支。...展望未来,我们建议用户考虑在TensorFlow 2.0中将其Keras代码切换为tf.keras。
Checkpointing Tutorial for TensorFlow, Keras, and PyTorchThis post will demonstrate how to checkpoint...Let's see how to make this tangible using three of the most popular frameworks on FloydHub.TensorFlow...We're now set up to save checkpoints in our TensorFlow code.Resuming a TensorFlow checkpointGuess what...on (Tensorflow 1.3.0 + Keras 2.0.6 on Python3.6)The --gpu flag is actually optional here - unless you... --env flag specifies the environment that this project should run on (Tensorflow 1.3.0 + Keras 2.0.6
Shao-Hua Sun 在 Github 上放出了 SELU 与 Relu、Leaky Relu 的对比,机器之心对比较结果进行了翻译介绍,具体的实现过程可参看以下项目地址。...激活函数 在keras 2.0.6版本之后才可以使用selu激活函数,但是在版本2.0.5还是不行,所以得升级到这个版本。...在全连接层后面接上selu最终收敛会快一些 来看一下,一个介绍非常详细的github:bigsnarfdude/SELU_Keras_Tutorial 具体对比效果: ?...from __future__ import print_function import keras from keras.datasets import mnist from keras.models...中使用dropout_selu + SELU 该文作者在tensorflow也加入了selu 和 dropout_selu两个新的激活函数。
数据准备好后,我们使用训练文件训练模型。目前,Keras-MXNet中的保存模型仅支持channels_first数据格式,根据Keras-MXNet性能指南,已知这种格式会有更好的性能。...所以,需要更新Keras配置以使用channels_first图像数据格式: 可以在$ HOME / .keras / keras.json访问Keras配置文件 { “backend”:“mxnet...我们在SmileCNN存储库中创建了一个名为keras-mms的模型存档目录。...我们将保存的训练模型的符号和参数文件移动到keras-mms目录中,该目录用于在MXNet模型服务器上托管模型推理。 cp smileCNN_model- * ..../keras-mms/ cd keras-mms/ 注意:以下部分介绍了创建keras-mms目录中已存在的文件的过程。
初学者在调用keras时,不需要纠结于选择tf.keras还是直接import keras,现如今两者没有区别。从具体实现上来讲,Keras是TensorFlow的一个依赖(dependency)。...但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。 所以在此主要记录一下tf.keras.models的使用。...导入 import tensorflow as tf import tensorflow.keras as keras import tensorflow.keras.layers as layers...Sequential类通过Layer的input与output属性来维护层之间的关系,构建网络模型; 其中第一层必须是InputLayer或者Input函数构建的张量; image.png 实例 导入和定义...hide1_layer, hide2_layer, output_layer]) 之后的训练中不要忘记改变model变量。
模型保存:在推理引擎下保存模型,可得到推理引擎支持的模型文件,即对应的计算图的显示表示。...将 TensorFlow 模型中的参数转移到 PyTorch 模型中,确保权重参数正确地转移。最后保存转换后的 PyTorch 模型,以便在 PyTorch 中进行推理。...规范式转换需要确保源框架能够正确导出规范格式的模型文件,并且目标框架能够正确导入;需要定义良好的跨框架兼容性,包括对各种算子的定义和数据格式的支持。...这种方法能够捕获动态执行过程中的所有操作,确保转换后的静态图模型能够准确再现动态图模型的行为。对接主流通用算子,确保模型中的通用算子在目标框架中能够找到对应的实现。...;根据推理引擎的中间格式 IR,导出并保存模型文件,用于后续真正推理执行使用。在模型转换过程中,要注意确保源框架和目标框架中的算子兼容,能够处理不同框架中张量数据格式的差异。
Keras还可以让开发人员快速对比测试几种深度学习框架的相对性能。Keras的配置文件中有一个参数指定了用什么后端框架。...虚拟机的镜像文件是Azure DSVM (Data Science Virtual Machine)。镜像文件预装了Keras、Tensorflow、Theano、MXNet及其它数据科学工具。...结论 各组实验中,不同框架的性能对比 Tensorflow在各组CNN模型的实验中都表现出色,但是在RNN模型上表现一般。...CNTK在 BAbi RNN 和 MNIST RNN 实验中的表现远远好于Tensorflow和Theano,但是在CNN实验中不及Tensorflow。...MXNet在RNN测试中的表现略好于CNTK和Tensorflow,在MLP实验中性能碾压其它所有框架。但是受限于v2版Keras的功能,无法参与另外两组对比实验,不过这种情况马上会得到解决。
目前,Keras 官方版已经支持谷歌的 TensorFlow、微软的 CNTK、蒙特利尔大学的 Theano,此外,AWS 去年就宣布 Keras 将支持 Apache MXNet,上个月发布的 MXNet...Keras 配置文件中有一个参数决定了使用哪一个深度学习框架作为后端,因此我们可以构建一个相同的模型在不同的深度学习框架(如 TensorFlow、CNTK、Theano)上直接运行。...在其他三个测试中以 MXNet 作为后端也需要进行一些细微的调整,主要是新版本的 Keras 重命名了一些函数。...MXNet 在 RNN 测试上要比 CNTK 和 TensorFlow 要好一点,此外它在 MLP 上要比所有框架的性能都要好。...在开源社区中,这些框架都在不断扩展与增强,从而提供更好的性能并轻松地部署到产品中。在考虑使用这些深度学习框架投入生产时,性能是首要的。
为什么选择 Keras? 在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的一些比较。...在浏览器中,通过 GPU 加速的 JavaScript 运行时,例如:Keras.js 和 WebDNN。 在 Google Cloud 上,通过 TensorFlow-Serving。...在 Python webapp 后端(比如 Flask app)中。 在 JVM 上,通过 SkyMind 提供的 DL4J 模型导入。 在 Raspberry Pi 树莓派上。...支持的后端有: 谷歌的 TensorFlow 后端 微软的 CNTK 后端 Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。...Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。
Keras 3.0 是对 Keras 代码库的全新重构,可以在 JAX、TensorFlow 和 PyTorch 上运行,为大型模型的训练和部署提供了全新功能。...Keras 3.0 的基本信息和特性 多框架支持:Keras 3.0 支持在 JAX、TensorFlow 和 PyTorch 上运行,包括一百多个层、数十种度量标准、损失函数、优化器和回调函数。...不足: 运行速度:由于 Keras 是在 TensorFlow 的基础上再次封装的,因此运行速度可能没有 TensorFlow 快。...ONNX Runtime 可以与 PyTorch、Tensorflow/Keras、TFLite、scikit-learn 和其他框架中的模型一起使用。...它通过将这些模型编译成高效的 C 代码或共享库(如 DLL 或 SO 文件),从而使得在不同环境下部署变得更加高效和灵活。
在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的一些比较。 ---- Keras 优先考虑开发人员的经验 Keras 是为人类而非机器设计的 API。...在浏览器中,通过 GPU 加速的 JavaScript 运行时,例如:Keras.js 和 WebDNN。 在 Google Cloud 上,通过 TensorFlow-Serving。...在 Python webapp 后端(比如 Flask app)中。 在 JVM 上,通过 SkyMind 提供的 DL4J 模型导入。 在 Raspberry Pi 树莓派上。...支持的后端有: 谷歌的 TensorFlow 后端 微软的 CNTK 后端 Theano 后端 亚马逊也正在为 Keras 开发 MXNet 后端。...Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。
使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...这里,我们将展示如何基于混淆矩阵(召回、精度和f1)实现度量,并展示如何在tensorflow 2.2中非常简单地使用它们。...自tensorflow 2.2以来,添加了新的模型方法train_step和test_step,将这些定制度量集成到训练和验证中变得非常容易。...然而,在我们的例子中,我们返回了三个张量:precision、recall和f1,而Keras不知道如何开箱操作。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。
地址:https://github.com/Microsoft/MMdnn/tree/master/mmdnn/conversion Caffe Keras MXNet TensorFlow(实验阶段,...中间表征:中间表征在 protobuf 二进制文件中储存网络架构,在 NumPynative 格式中储存预训练权重。此外,目前 IR 权重数据使用的是 NHWC 格式。...官方教程: Keras "inception_v3" to CNTK 用户案例: MXNet "resnet 152 11k" to PyTorch MXNet "resnext" to Keras Tensorflow..."resnet 101" to PyTorch Tensorflow "mnist mlp model" to CNTK Tensorflow "Inception_v3" to MXNet Caffe...准备 Keras 模型。以下示例将首先下载预训练模型,然后使用简单的模型抽取器从 Keras 应用中获取模型,抽取器将抽取 Keras 模型架构和权重。
使用Google Colab运行或导入.py文件 首先运行这些代码,以便安装必要的库并执行授权。 !...image.png 3.在Google云端硬盘中打开文件夹 文件夹与Github repo当然相同:) ? image.png 4.打开笔记本 右键单击>打开方式> Colaboratory ?...运行 现在,您可以在Google Colab中运行Github repo。 ? image.png 一些有用的提示 1.如何安装库? Keras !...(在本教程中,我更改为app文件夹)使用以下简单代码: import os os.chdir("drive/app") 运行上面的代码后,如果再次运行 !...要在TensorFlow,Keras等中查看函数参数,只需在函数名后添加问号(?): ? image.png 现在,您无需单击TensorFlow网站即可查看原始文档。 ?
/ 首先,打开 minivggnetkeras.py 文件并插入以下代码: 从导入一系列所需的 Keras 库开始构建模型。...打开 train_network_keras.py 文件并插入以下代码: 我们首先在代码的第 2-13 行导入我们模型训练所需的包。...需要注意的是: 在第 3 行,将 Matplotlib 的后端设置为 Agg,以便我们可以能将训练图保存为图像文件。 在第 6 行,我们导入 MiniVGGNetKeras 类。...首先,打开 minivggnettf.py 文件,我们将实现 TensorFlow 版的 MiniVGGNet 模型,代码如下: 在这个 .py 文件中,请注意第 2 行我们需要导入所需的 tensorflow...CRELU 激活函数在 Keras 中没有相应的实现,但是在 TensorFlow 中可以。
在本文中,我们不仅将在Keras中构建文本生成模型,还将可视化生成文本时某些单元格正在查看的内容。就像CNN一样,它学习图像的一般特征,例如水平和垂直边缘,线条,斑块等。...类似,在“文本生成”中,LSTM则学习特征(例如空格,大写字母,标点符号等)。LSTM层学习每个单元中的特征。 我们将使用Lewis Carroll的《爱丽丝梦游仙境》一书作为训练数据。...步骤1:导入所需的库 import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout...visualize函数将预测序列,序列中每个字符的S形值以及要可视化的单元格编号作为输入。根据输出的值,将以适当的背景色打印字符。 将Sigmoid应用于图层输出后,值在0到1的范围内。...这表示单元格在预测时要查找的内容。如下所示,这个单元格对引号之间的文本贡献很大。 引用句中的几个单词后激活了单元格435。 对于每个单词中的第一个字符,将激活单元格463。
为此,微软就做了一套能在不同的深度学习框架之间进行交互式操作的工具集——MMdnn,它是一个综合性的跨框架解决方案,能够用于深度神经网络模型的转换,可视化及诊断等操作,可在Caffe,Keras,MXNet...支持框架 Caffe Keras MXNet Tensorflow(实验研究性的) Microsoft Cognitive Toolkit(CNTK)(生产性的) PyTorch(生产性的) CoreML...打开MMdnn模型可视化器并选择文件keras_inception_v3.json 例子 1.Keras "inception_v3" to CNTK及相关问题 https://github.com/...中间表示将网络体系结构存储在protobuf二进制文件中,并以NumPy本地的格式储存预训练的模型权重。...详细信息在ops.txt和graph.proto中。欢迎提出新操作及任何意见。 构架 我们正在开发其他的框架模型转换及可视化功能,如Caffe2,PyTorch,CoreML等框架。
目前,ONNX总共支持微软的CNTK、Facebook的Caffe2、PyTorch和亚马逊的MXNet这四种框架,开发人员可灵活地选择其中一种框架构建和训练模型,再导入其他框架中完成推理任务。...据Keras作者、Google深度学习研究院François Chollet上月公布的GitHub上深度学习框架排名情况来看,目前使用人数最多的框架还是Google的TensorFlow,MXNet和PaddlePaddle...△ 深度学习框架GitHub综合指数 ONNX-MXNet ONNX-MXNet是一个将ONNX深度学习模型导入到Apache MXNet中的开源Python包。...利用其优化的可扩展的引擎,可以之后将模型导入到MXNet中运行,继而进行推理等任务。 这次亚马逊收编的MXNet加入ONNX联盟,是“开放生态”愿景的一次前进。...我们的任务是让开发人员有机会在所有框架中自由地工作。”Facebook在博客中写着。 MXNet的加盟其实也是开发人员的福音,AI框架间的互操作性越大,从研发到产品化所消耗的时间就越容易缩短。
领取专属 10元无门槛券
手把手带您无忧上云