首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

协方差矩阵-在离散中求“聚合”

计算偏差的乘积:将两个变量的偏差相乘,如果两个变量同时大于或小于均值,乘积为正;如果一个大于均值,另一个小于均值,乘积为负。 计算乘积的期望:对所有可能的样本点上的乘积求平均,得到协方差。...对称性: Cov(X, Y) = Cov(Y, X),线性性: Cov(aX+b, cY+d) = acCov(X, Y) (a, b, c, d为常数),方差是特殊的协方差: Var(X) = Cov...协方差矩阵是一个方阵,它描述了多个随机变量之间的协方差关系。 协方差矩阵想象成一个弹簧系统。如果两个变量的协方差很大,那么它们就像两个紧密连接的弹簧,当一个弹簧伸展时,另一个弹簧也会跟着伸展。...协方差矩阵的数学表示,假设我们有n个随机变量X1, X2, ..., Xn,它们的协方差矩阵C可以表示为。 C = [cov(X1, X1) cov(X1, X2) ......cov(Xn, Xn)] 其中,cov(Xi, Xj)表示随机变量Xi和Xj的协方差。协方差矩阵是一个对称矩阵,即cov(Xi, Xj) = cov(Xj, Xi)。

6310

python求逆矩阵的方法,Python 如何求矩阵的逆「建议收藏」

补充:python+numpy中矩阵的逆和伪逆的区别 定义: 对于矩阵A,如果存在一个矩阵B,使得AB=BA=E,其中E为与A,B同维数的单位阵,就称A为可逆矩阵(或者称A可逆),并称B是A的逆矩阵...(此时的逆称为凯利逆) 矩阵A可逆的充分必要条件是|A|≠0。 伪逆矩阵是逆矩阵的广义形式。由于奇异矩阵或非方阵的矩阵不存在逆矩阵,但可以用函数pinv(A)求其伪逆矩阵。...代码如下: 1.矩阵求逆 import numpy as np a = np.array([[1, 2], [3, 4]]) # 初始化一个非奇异矩阵(数组) print(np.linalg.inv(a...)) # 对应于MATLAB中 inv() 函数 # 矩阵对象可以通过 .I 求逆,但必须先使用matirx转化 A = np.matrix(a) print(A.I) 2.矩阵求伪逆 import numpy...A 为奇异矩阵,不可逆 print(np.linalg.pinv(A)) # 求矩阵 A 的伪逆(广义逆矩阵),对应于MATLAB中 pinv() 函数 这就是矩阵的逆和伪逆的区别 截至2020/10

5.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    聊聊对称非对称加密在HTTPS中的应用

    目前常用的加密算法主要分成三类: 对称加密算法 非对称加密算法 消息摘要算法 在互联网中,信息防护主要涉及两个方面:信息窃取和信息篡改。...相对于非对称加密,对称加密具有更高的加解密速度,但双方都需要事先知道密钥,密钥在传输过程中可能会被窃取,因此安全性没有非对称加密高。...在这个过程中,公钥负责加密,私钥负责解密,数据在传输过程中即使被截获,攻击者由于没有私钥,因此也无法破解。 非对称加密算法的加解密速度低于对称加密算法,但是安全性更高。...对称/非对称加密算法在HTTPS协议中的应用 HTTPS其实是有两部分组成:HTTP + SSL / TLS,也就是在HTTP上又加了一层处理加密信息的模块。...非对称加密算法的性能是非常低的,原因在于寻找大素数、大数计算、数据分割需要耗费很多的CPU周期,所以一般的HTTPS连接只在第一次握手时使用非对称加密,通过握手交换对称加密密钥,在之后的通信走对称加密。

    1.8K50

    矩阵特征值分解(EDV)与奇异值分解(SVD)在机器学习中的应用

    文章目录 说明 特征分解定义 奇异值分解 在机器学习中的应用 参考资料 百度百科词条:特征分解,矩阵特征值,奇异值分解,PCA技术 https://zhuanlan.zhihu.com/p/29846048...,常能看到矩阵特征值分解(EDV)与奇异值分解(SVD)的身影,因此想反过来总结一下EDV与SVD在机器学习中的应用,主要是表格化数据建模以及nlp和cv领域。...奇异值分解 奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。...假设我们的矩阵A是一个m×n的矩阵,那么我们定义矩阵A的SVD为: 在机器学习中的应用 在表格化数据中的应用 (1)PCA降维 PCA(principal components analysis...在cv中的应用 SVD应用于图像压缩 https://blog.csdn.net/qq_40527086/article/details/88925161 发布者:全栈程序员栈长,转载请注明出处:https

    1.2K20

    Python|DFS在矩阵中的应用-剪格子

    今天向大家分享DFS在矩阵中的代码实现,文字较多,预计阅读时间为5分钟,会涉及很有用的基础算法知识。如果对DFS还不熟悉,可以上B站看看‘正月点灯笼’的视频,讲的很不错。...文字表述核心步骤: 1.求出矩阵的和,如果是奇数不可拆分,输出0.如果是偶数执行步骤2。 2.遍历矩阵中的所有点,对于每个点,得出其坐标(x,y),并代入步骤3。...if snum + martix[x][y] > t_sum/2: return 'no' 在文字描述中总是在反复执行第3步,使用递归函数可以大大减少代码量。...总而言之,当你在递归函数中无法正常使用append函数时,可以用深拷贝path[:]解决。 2.为什么不直接用return返回的结果,而要用aim_path这个全局数组来存。...在dfs函数内print(path),看一下结果再结合第2点中那篇文章的知识,大概就能明白了。

    1.6K20

    矩阵的特征分解(推导+手算+python计算+对称矩阵的特征分解性质)

    总而言之,这篇文章为希望在 Linux 环境下部署并远程访问 Paint Board 的用户提供了清晰、实用的指导,值得推荐。1....矩阵在特征向量所指的方向上具有 增强(或减弱)特征向量 的作用。...这也就是说,如果矩阵持续地叠代作用于向量,那么特征向量的就会突显出来,利用python进行计算:首先举一个例子,假设矩阵A和向量V:用矩阵A去反复左乘一个向量V,python代码如下:import numpy...: v_1 = 1, v_2=-1, v_3=1当\lambda=1时,(I-A)v=0:result: v_1 = 0, v_2=1, v_3=-1(2)python计算使用python中自带的库eig...2.1.4 对称矩阵的特征分解(这个性质后面SVD推导用到)定理:假设矩阵A是一个对称矩阵,则其不同特征值对应的特征向量两两正交。证明:

    16520

    8段代码演示Numpy数据运算的神操作

    Numpy是Python中众多机器学习库的依赖,这些库通过Numpy实现基本的矩阵计算,Python的OpenCV库自然也不例外。...在推荐系统的实现过程中,就用到了矩阵分解算法。例如主流的开源大数据计算引擎Spark在ml机器学习库中通过ALS算法实现了推荐系统,也有的推荐系统采用SVD算法来实现整套系统中的矩阵分解过程。...在Numpy中,为我们提供了基于SVD算法的矩阵分解,SVD算法即为奇异值分解法,相对于矩阵的特征值分解法,它可以对非方阵形式的矩阵进行分解,将一个矩阵A分解为如下形式: A = U∑VT 式中,A代表需要被分解的矩阵...这是因为一个矩阵与其转置相乘之后的矩阵是对称矩阵(矩阵中的元素沿着对角线对称),将对称矩阵进行分解后的结果可以表示为: A = V∑VT 通过观察上式,我们不难发现U与V矩阵是相同的,因为这个例子中,U...观察到协方差矩阵C便是一个对称矩阵,那么将其进行奇异值分解后则可以表示为: C = V∑VT 2) 将经过中心化的样本矩阵X进行奇异值分解,可以得到: X = U∑VT 因此,我们可以得到: XTX

    1.5K20

    python中矩阵的转置_Python中的矩阵转置

    大家好,又见面了,我是你们的朋友全栈君。 Python中的矩阵转置 via 需求: 你需要转置一个二维数组,将行列互换....有时候,数据到来的时候使用错误的方式,比如,你使用微软的ADO接口访问数据库,由于Python和MS在语言实现上的差别....Getrows方法在Python中可能返回的是列值,和方法的名称不同.本节给的出的方法就是这个问题常见的解决方案,一个更清晰,一个更快速....在zip版本中,我们使用*arr语法将一维数组传递给zip做为参数,接着,zip返回一个元组做为结果.然后我们对每一个元组使用list方法,产生了列表的列表(即矩阵).因为我们没有直接将zip的结果表示为...关于*args和**kwds语法: args(实际上,号后面跟着变量名)语法在Python中表示传递任意的位置变量,当你使用这个语法的时候(比如,你在定义函数时使用),Python将这个变量和一个元组绑定

    3.5K10

    机器学习中的数学(6)-强大的矩阵奇异值分解(SVD)及其应用

    特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中。而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景。...两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征。...上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值矩阵不是对称的时候,假如说矩阵是下面的样子:...那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 * A,将会得到一个方阵,我们用这个方阵求特征值可以得到: ? 这里得到的v,就是我们上面的右奇异向量。...Lanczos迭代就是一种解对称方阵部分特征值的方法(之前谈到了,解A’* A得到的对称方阵的特征值就是解A的右奇异向量),是将一个对称的方程化为一个三对角矩阵再进行求解。

    1.4K70

    奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域...$可以看出$A^TA$的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到$AA^T$的特征向量组成的就是我们SVD中的U矩阵。     ...SVD计算举例     这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。...对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。...SVD用于PCA     在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵$X^TX$的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。

    66630

    奇异值分解(SVD)原理与在降维中的应用

    作者: 刘建平 编辑:黄俊嘉 授权转发自:刘建平《奇异值分解(SVD)原理与在降维中的应用》 地址:https://www.cnblogs.com/pinard/...p/6251584.html 前 言 奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统...的特征值取平方根来求奇异值。 03 SVD计算举例 这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为: ? 我们首先求出 ? 和 ? : ? 进而求出 ?...的特征值和特征向量: ? 接着求 ? 的特征值和特征向量: ? 利用Avi=σiui,i=1,2求奇异值: ? 当然,我们也可以用 ? 直接求出奇异值为 ? 和1. 最终得到A的奇异值分解为: ?...对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。

    2K40

    谱聚类

    广义上来说,任何在算法中用到SVD/特征值分解的,都叫Spectral Algorithm。顺便说一下,对于任意矩阵只存在奇异值分解,不存在特征值分解。...对于正定的对称矩阵,奇异值就是特征值,奇异向量就是特征向量。...只是谱聚类算法在进行图划分的时候发现计算量很大,转而求特征值去了,而且最后还在几个小特征向量组成的矩阵上进行了K-Means聚类。...Simply speaking,谱聚类算法分为3步: 构造一个N×N的权值矩阵W,Wij表示样本i和样本j的相似度,显然W是个对称矩阵。...再构造一个对角矩阵D,Dii为W第i列元素之和。最后构造矩阵L=D-W。可以证明L是个半正定和对称矩阵。 求L的前K小特征值对应的特征向量(这要用到奇异值分解了)。

    81140

    【Math for ML】矩阵分解(Matrix Decompositions) (下)

    在介绍SVD如何计算之前,首先回顾一下【Math for ML】矩阵分解(Matrix Decompositions) (下)中介绍过任何对称矩阵都能对角化,其公式如下: \[S=S^T=PDP^T\...] 所以一个对称矩阵的奇异值分解是十分相似的,即 \[S=U\Sigma V^T\] 对比之后可知有\(U=P,V=P,\Sigma=D\) 另外我们还需要知道的是对于任意矩阵\(A∈R^{m×n...}\),其转置矩阵和其本身相乘之后得到的矩阵都是对称矩阵,即\(A^TA∈R^{n×n}\)和\(AA^T∈R^{m×m}\)均为对称矩阵。...计算\(U\) 和求\(V\)类似,这里不再赘述。\(U\)即为\(AA^T\)的特征矩阵。...,即有n个独立的特征向量条件下才可以做特征值分解; 特征值分解后得到的矩阵\(P\)不必须是正交矩阵,也就是说\(P\)可以起到伸缩和旋转的作用;而SVD中的\(U,V\)矩阵都必须是正交矩阵,所以这两个矩阵只能起到旋转变换的作用

    1K20

    如何让奇异值分解(SVD)变得不“奇异”?

    本文红色石头将继续使用白话语言,介绍机器学习中应用十分广泛的矩阵分解方法:奇异值分解(SVD)。本文不注重详细的数学推导,只注重感性的理解以及如何在实际应用中使用它们。...02 对称矩阵的矩阵分解(EVD) 如果方阵 A 是对称矩阵,例如: 对称矩阵特征分解满足以下公式: 那么对其进行特征分解,相应的 Python 代码为: 运行输出: 特征分解就是把 A...注意,我们发现对阵矩阵的分解和非对称矩阵的分解除了公式不同之外,特征向量也有不同的特性。对称矩阵的不同特征值对应的特征向量不仅线性无关,而且是相互正交的。什么是正交呢?就是特征向量内积为零。...3 奇异值分解(SVD) 我们发现,在矩阵分解里的 A 是方阵或者是对称矩阵,行列维度都是相同的。但是实际应用中,很多矩阵都是非方阵、非对称的。那么如何对这类矩阵进行分解呢?...首先放上男神的照片: 我们对该图片进行奇异值分解,则该图片可写成以下和的形式: 上式中,λ1, λ2, ... , λk 是按照从大到小的顺序的。

    60610

    机器学习算法之PCA算法

    前言 在机器学习中降维是我们经常需要用到的算法,在降维的众多方法中PCA无疑是最经典的机器学习算法之一,最近准备撸一个人脸识别算法,也会频繁用到PCA,本文就带着大家一起来学习PCA算法。...同时,注意到上面的矩阵M是对称的,如果不是对称的,例如 那么M*X的变换就可以用下图来表示: ? 其中蓝色箭头指的是一个最主要的变换方向。...特征向量为: 同理,当时,解线性方程组 ,特征向量为: 最后,方阵A的特征值分解为: 奇异值分解 上面讲解的特征值分解在实际应用的时候有一个最致命的缺点,就是只能用于方阵,也即是n*n的矩阵,而我们实际应用中要分解的矩阵大多数都不是方阵...,在矩阵中也是从大到小排列。...如果r的取值远远小于n,从计算机内存的角度来说,右边三个矩阵的存储内存要远远小于矩阵A的。所以在奇异值分解中r的取值很重要,就是在计算精度和时间空间之间做权衡。

    1.1K30
    领券