首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas绘图功能

柱状图 柱状图是一个单变量图(注意区分柱状图和条形图),它将一个数值变量分组到各个数值单元中,并显示每个单元中的观察值数量。直方图是了解数值变量分布的一种有用工具。...从图上我们可以看到钻石重量的分布是十分倾斜的:大多数钻石大约1克拉及以下,但也有极少量极端值。...这个直方图让我们更好地了解了分布中的一些细微差别,但我们不能确定它是否包含所有数据。将X轴限制在3.5可能会剔除一些异常值,以至于它们在原始图表中没有显示。...boxplot最有用的特性之一是能够生成并排的boxplots。每个分类变量都在一个不同的boxside上绘制一个分类变量。...密度图 密度图以连续曲线显示数值变量的分布。它类似于柱状图,但密度图能更好地显示分布的基本形状。

1.8K10

28个数据可视化图表的总结和介绍

频率表 频率是一个数值出现的次数的计数。频率表是用表格表示频率的一种方式。表格如下所示。 Scatter Plot 散点图是一种在二维坐标系中绘制两个数值变量的方法。...在柱状图中频率显示在分类变量的离散条中,而直方图显示连续间隔的频率。它可以用于查找区间内连续变量的频率 。 Pie Chart 饼图以圆形的方式以百分比表示频率。...我们可以在堆叠柱状图中集成比传统柱状图[2]更多的信息。 Grouped Bar Chart “分组柱状图”这个名字意味着——它是一种分成不同组的特殊类型的柱状图。它主要用于比较两个分类变量。...这是一种直观地检查数值变量是否符合正态分布的方法。 Violin Plot 小提琴图和箱形图是相关的。从小提琴图中可以得到的另一个信息是密度分布。简单地说它是一个与密度分布集成的箱形图。...绘制折线图是为了比较数值变量在不同类别值下的变异性。 Swarm plot 分簇散点图是另一个受“beeswarm”启发的有趣图表,我们可以了解不同的分类值如何沿数值轴分布 。

2.1K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    28个数据可视化图表的总结和介绍

    频率表 频率是一个值出现的次数的计数。频率表是用表格表示频率的一种方式。表格如下所示。 Scatter Plot 散点图是一种在二维坐标系中绘制两个数值变量的方法。...通过散点图我们可以很容易地可视化数据分布 Line Plot 折线图类似于散点图,但点是用连续的线按顺序连接起来的。在二维空间中寻找数据流时,折线图更加直观。...在柱状图中频率显示在分类变量的离散条中,而直方图显示连续间隔的频率。它可以用于查找区间内连续变量的频率 。 Pie Chart 饼图以圆形的方式以百分比表示频率。...我们可以在堆叠柱状图中集成比传统柱状图[2]更多的信息。 Grouped Bar Chart “分组柱状图”这个名字意味着——它是一种分成不同组的特殊类型的柱状图。它主要用于比较两个分类变量。...绘制折线图是为了比较数值变量在不同类别值下的变异性。 Swarm plot 分簇散点图是另一个受“beeswarm”启发的有趣图表,我们可以了解不同的分类值如何沿数值轴分布 。

    2.5K40

    教程 | 5种快速易用的Python Matplotlib数据可视化方法

    直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...其次,cumulative 参数是一个布尔值,它允许我们选择直方图是不是累积的,即选择概率密度函数(PDF)或累积密度函数(CDF)。...如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 ? 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?

    2.4K60

    5 种快速易用的 Python Matplotlib 数据可视化方法

    直方图案例 下面展示了 Matplotlib 中绘制直方图的代码。这里有两个步骤需要注意,首先,n_bins 参数控制直方图的箱体数量或离散化程度。...其次,cumulative 参数是一个布尔值,它允许我们选择直方图是不是累积的,即选择概率密度函数(PDF)或累积密度函数(CDF)。...如下图所示,均匀分布设置透明度为 0.5,因此我们就能将其叠加在高斯分布上,这允许用户在同一图表上绘制并比较两个分布。 叠加直方图 在叠加直方图的代码中,我们需要注意几个问题。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。

    2K40

    Python 数据可视化之山脊线图 Ridgeline Plots

    Joyplots 是堆叠的、部分重叠的密度图,就是这么简单。它们是一种很好的绘制数据的方式,可以用来直观比较分布,特别是哪些随着一个维度(比如时间)变化的分布。虽然这并不是一种新技术。...在行为差异、特征工程和预测建模等场景中,了解不同组之间的变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢在单一坐标轴上绘制组级分布图,例如直方图或密度图。...它以清晰的方式展示不同变量或变量类别的分布差异,帮助我们更好地理解数据中的群体特征,从而获得更深入的洞察和启发。...用于划分不同组的变量分布的特征名称。本次实验中是 “Name”。 grid:布尔值,默认是 True。是否显示轴网格线。 title:绘制的图表的标题。 alpha:设置透明度。...空间效率:通过在单个图中堆叠,山脊线图可以有效地利用空间,避免了创建多个单独的密度图。 美观性:山脊线图在视觉上吸引人,用不同的颜色和样式区分不同的组,使得数据更加生动和直观。

    52300

    绘制频率分布直方图的三种方法,总结的很用心!

    Seaborn可往单变量直方图上添加很多东西,更美观,pandas可成组生成直方图。...# 上面表达了所有患者的年龄分布,如果按性别分组, # 研究不同性别下年龄分布的差异,该如何实现叻?...2)、bins:指定直方图条形的个数。 3)、hist:bool类型的参数,是否绘制直方图,默认True。 4)、kde:bool类型的参数,是否绘制核密度图,默认True。...6)、fit:指定一个随机分布对象,需调用scipy模块中随机分布函数,用于绘制随机分布概率密度曲线。 7)、hist_kws:以字典形式传递直方图的其他修饰属性,如填充色、边框色、宽度等。...16)、ax:指定子图的位置。 Python新手成长之路案例集锦,长按关注:

    36.6K42

    《数据可视化基础》第四章:可视化图形推荐

    2 分布 直方图和密度图提供了最直观的分布可视化效果,但都需要选择可视化参数,并且可能会产生误导。累积密度和q-q图始终如实地表示数据,但更难以解释。 ?...脊线图 (峰峦图, Ridgeline plots) 可以替代小提琴图,并且在可视化随时间变化的分布时通常很有用。 ? 3 比例 我们使用饼图、并排的条形图以及堆叠的条形图来可视化比例。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...在这种情况下,轮廓线,2D箱或六角箱可提供替代方案。另一方面,当我们要可视化两个以上的变量时,我们可以选择以相关图而不是基础原始数据的形式绘制相关系数。 ?...如果我们有两个响应变量的时间序列,我们可以绘制一个连接的散点图,其中我们首先在散点图中绘制两个响应变量,然后连接对应于相邻时间点的点。我们可以使用平滑线来表示较大数据集中的趋势。 ?

    2.4K30

    数据可视化(11)-Seaborn系列 | 小提琴图violinplot()

    小提琴形图(violin plot)的作用与盒形图(box plot)和whidker plot的作用类似,它显示了一个或多个分类变量的几个级别的定量数据的分布,我们可以通过观察来比较这些分布。...输入数据可以通过多种格式传递: list、numpy数组、pandas long-form DataFrame wide-form DataFrame 在大多数情况下,可以使用numpy或Python...设置为0可将小提琴范围限制在观测数据范围内 (即,与ggplot中的trim=true具有相同的效果)。 scale:{“area”,“count”,“width”} 用于缩放每个小提琴宽度。...如果是四分位数,则绘制分布的四分位数。如果point或stick, 则显示每个基础数据点。...matplotlib.pyplot as plt sns.set(style="whitegrid") # 读取数据 tips = sns.load_dataset("tips") """ 案例2: 绘制一个按分类变量分组的垂直小提琴图

    13.4K10

    数据可视化干货:使用pandas和seaborn制作炫酷图表(附代码)

    在绘制柱状图时,Series或DataFrame的索引将会被用作x轴刻度(bar)或y轴刻度(barh)(参考图9-15): In [64]: fig, axes = plt.subplots(2, 1...▲图9-21 小费百分比的直方图 密度图是一种与直方图相关的图表类型,它通过计算可能产生观测数据的连续概率分布估计而产生。通常的做法是将这种分布近似为“内核”的混合,也就是像正态分布那样简单的分布。...作为例子,考虑由两个不同的标准正态分布组成的双峰分布(见图9-23): In [96]: comp1 = np.random.normal(0, 1, size=200) In [97]: comp2...▲图9-24 seaborn回归/散点图 在探索性数据分析中,能够查看一组变量中的所有散点图是有帮助的; 这被称为成对图或散点图矩阵。...从头开始绘制这样一个图是有点工作量的,所以seaborn有一个方便的成对图函数,它支持在对角线上放置每个变量的直方图或密度估计值(结果图见图9-25): In [107]: sns.pairplot(trans_data

    5.4K40

    可视化图表样式使用大全

    密度图 ? 密度图 (Density Plot) 又称为「密度曲线图」,用于显示数据在连续时间段内的分布状况。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...气泡图是一种包含多个变量的图表,结合了散点图和比例面积图,圆圈大小需要按照圆的面积来绘制,而非其半径或直径。 通过利用定位和比例,气泡图通常用来比较和显示已标记/已分类的圆圈之间的关系。...点示地图 (Dot Map) 也称为「点示分布图」或「点示密度图」。在地理区域上放置相等大小的圆点,旨在检测该地域上的空间布局或数据分布。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。

    9.4K10

    60 种常用可视化图表,该怎么用?

    密度图 密度图 (Density Plot) 又称为「密度曲线图」,用于显示数据在连续时间段内的分布状况。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...点示地图 点示地图 (Dot Map) 也称为「点示分布图」或「点示密度图」。在地理区域上放置相等大小的圆点,旨在检测该地域上的空间布局或数据分布。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。

    9K10

    5个快速而简单的数据可视化方法和Python代码

    其次,“累积”参数是一个布尔值,它允许我们选择直方图是否是累积的。这基本上是选择概率密度函数(PDF)或累积密度函数(CDF)。...我们将看到三种不同类型的条形图:常规条形图、分组条形图和堆叠条形图。在我们进行的过程中,请查看下图中的代码。 常规的条形图如下面的第一个图所示。...在' barplot() '函数中,' xdata '表示x轴上的标记,' ydata '表示y轴上的条高。误差条是以每个栏为中心的一条额外的线,用来显示标准差。 分组条形图允许我们比较多个分类变量。...然后我们循环遍历每一组,对于每一组,我们在x轴上画出每一个刻度的横杠,每一组也用颜色进行编码。 堆叠的条形图对于可视化不同变量的分类构成非常有用。在下面的堆叠条形图中,我们比较了每天的服务器负载。...Matplotlib函数' boxplot() '为' ydata '的每一列或序列' ydata '中的每个向量绘制一个箱线图,因此,“xdata”中的每个值对应于“y_data”中的列/向量。

    2.1K10

    常用60类图表使用场景、制作工具推荐!

    密度图 密度图 (Density Plot) 又称为「密度曲线图」,用于显示数据在连续时间段内的分布状况。...条形图的离散数据是分类数据,针对的是单一类别中的数量多少,而不会显示数值在某时间段内的持续发展。...点示地图 点示地图 (Dot Map) 也称为「点示分布图」或「点示密度图」。在地理区域上放置相等大小的圆点,旨在检测该地域上的空间布局或数据分布。...在绘制记数符号图表时,将类别、数值或间隔放置在同一个轴或列(通常为 Y 轴或左侧第一列)上。每当出现数值时,在相应的列或行中添加记数符号。...如果是按比例绘制的时间线,我们可以通过查看不同事件之间的时间间隔,了解事件发生的时间或即将在何时发生,从中查找时间段内的事件是否遵循任何模式,或者事件在该时间段内如何分布。

    8.9K20

    Python中最常用的 14 种数据可视化类型的概念与代码

    但是,数据可视化类型图繁多,在实际工作中,要选择最适合当前业务或数据的类型通常很棘手。...这些条的高度或长度与它们所代表的值成正比。条形可以是垂直的或水平的。垂直条形图有时也称为柱形图。 以下是按年指示加拿大人口的条形图。 条形图适合应用到分类数据对比,横置时也称条形图。...适用: 堆叠面积图不适用于表示带有负值的数据集。非常适用于对比多变量随时间变化的情况。 分类: 堆积面积图 同类别各变量和不同类别变量总和差异。 百分比堆积面积图 比较同类别的各个变量的比例差异。...一个矩形竖立在一个 bin 上,其高度与 bin 中的数据点数量成正比。直方图给人一种底层数据分布密度的感觉。...小提琴图 一般来说,小提琴图是一种绘制连续型数据的方法,可以认为是箱形图与核密度图的结合体。当然了,在小提琴图中,我们可以获取与箱形图中相同的信息。

    9.6K20

    小白也能看懂的seaborn入门示例

    distplot(单变量分布直方图) 在seaborn中想要对单变量分布进行快速了解最方便的就是使用distplot()函数,默认情况下它将绘制一个直方图,并且可以同时画出核密度估计(KDE)。...0, 0]) # 不绘制直方图即绘制核密度图,rug在轴上画凹槽 sns.distplot(d, hist=False, rug=True, color="r", ax=axes[0, 1]) # 绘制核密度图...violinplot violinplot与boxplot扮演类似的角色,它显示了定量数据在一个(或多个)分类变量的多个层次上的分布,这些分布可以进行比较。...在seaborn中,最简单的实现方式是使用jointplot()函数,它会生成多个面板,不仅展示了两个变量之间的关系,也在两个坐标轴上分别展示了每个变量的分布。...他们尤其善于表现交互作用:一个分类变量的层次之间的关系如何在第二个分类变量的层次之间变化。连接来自相同色调等级的每个点的线允许交互作用通过斜率的差异进行判断,这比对几组点或条的高度比较容易。

    4.7K20

    这5小段代码轻松实现数据可视化(Python+Matplotlib)

    这样,用户就可以在同一张图上查看两个变量的分布了。 ?...叠加直方图 在实现叠加直方图的代码中需要设置以下几个参数: 设置水平范围,以适应两种可变分布; 根据这个范围和期望的分组数量,计算并设置组距; 设置其中一个变量具有更高透明度,以便在一张图上显示两个分布...它允许对多个分类变量进行对比。如图所示,两组关系其一是分数与组(组G1,G2,...等)的关系,其二是用颜色区分的性别之间的关系。...代码与柱状图样式相同,同样为循环遍历每个组,只是这次是在旧柱体基础上堆叠,而不是在其旁边绘制新柱体。 ?...由于箱形图是为每个组或变量绘制的,因此设置起来非常容易。x_data是组或变量的列表,x_data中的每个值对应于y_data中的一列值(一个列向量)。

    97730

    有这5小段代码在手,轻松实现数据可视化(Python+Matplotlib)

    这样,用户就可以在同一张图上查看两个变量的分布了。...叠加直方图 在实现叠加直方图的代码中需要设置以下几个参数: 设置水平范围,以适应两种可变分布; 根据这个范围和期望的分组数量,计算并设置组距; 设置其中一个变量具有更高透明度,以便在一张图上显示两个分布...它允许对多个分类变量进行对比。如图所示,两组关系其一是分数与组(组G1,G2,...等)的关系,其二是用颜色区分的性别之间的关系。...代码与柱状图样式相同,同样为循环遍历每个组,只是这次是在旧柱体基础上堆叠,而不是在其旁边绘制新柱体。...由于箱形图是为每个组或变量绘制的,因此设置起来非常容易。x_data是组或变量的列表,x_data中的每个值对应于y_data中的一列值(一个列向量)。

    1.3K60

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    任何分析或建模数据的工作的早期步骤都应该是理解变量是如何分布的。分布可视化技术可以为许多重要问题提供快速答案。观察的范围是什么?它们的集中趋势是什么?它们是否严重偏向一个方向?是否有双态的证据?...FacetGrid上,所以还可以通过将第二个变量分配给col或row而不是(或加上)hue来在单独的子图中绘制每个单独的分布。...但这只会影响曲线的绘制位置;密度估计仍然会在没有数据存在的范围内平滑,导致在分布的极端处人为地降低: sns.displot(tips, x="total_bill", kind="kde") sns.displot...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...然而,将第二个变量赋值给y,将绘制一个二元分布: 案例1-双变量分布直方图与核密度图 A bivariate histogram bins the data within rectangles that

    32920

    seaborn从入门到精通03-绘图功能实现03-分布绘图distributional plots

    任何分析或建模数据的工作的早期步骤都应该是理解变量是如何分布的。分布可视化技术可以为许多重要问题提供快速答案。观察的范围是什么?它们的集中趋势是什么?它们是否严重偏向一个方向?是否有双态的证据?...FacetGrid上,所以还可以通过将第二个变量分配给col或row而不是(或加上)hue来在单独的子图中绘制每个单独的分布。...但这只会影响曲线的绘制位置;密度估计仍然会在没有数据存在的范围内平滑,导致在分布的极端处人为地降低: sns.displot(tips, x="total_bill", kind="kde") sns.displot...ECDF图的主要缺点是它表示分布的形状不如直方图或密度曲线直观。考虑鳍状肢长度的双峰性如何在直方图中立即显现,但要在ECDF图中看到它,必须寻找不同的斜率。...然而,将第二个变量赋值给y,将绘制一个二元分布: 案例1-双变量分布直方图与核密度图 A bivariate histogram bins the data within rectangles that

    31130
    领券