首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

广义估计方程和混合线性模型在R和python中的实现

广义估计方程和混合线性模型在R和python中的实现欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍针对某个科学问题...,可以得到回归系数及其方差的一致性估计混合线性模型(mixed linear model,MLM):它是一类对误差进行精细分解成对固定效应和随机效应等误差的广义线性模型的方法,相比广义线性模型而言,它能处理纵向数据...区分混合线性模型中的随机效应和固定效应是一个重要的概念。固定效应是具有特定水平的变量,而随机效应捕捉了由于分组或聚类引起的变异性。比如下方正在探究尿蛋白对来自不同患者的GFR的影响。...固定效应:具有特定的水平或值需要进行研究的主要变量,如尿蛋白等随机效应:患者分层结构:尿蛋白嵌套在患者内模型方程:GFR = 尿蛋白 + 患者 + 误差解释:解释固定效应,以了解尿蛋白的变化如何与GFR...- 实例操作及结果解读(R、Python、SPSS实现)混合线性模型介绍--Wiki广义估计方程中工作相关矩阵的选择及R语言代码在Rstudio 中使用pythonAn Introduction to

45400

深度 | 在 R 中估计 GARCH 参数存在的问题

这对我来说是个新闻,因为书籍经常引用 fGarch,所以这可能是那些寻求在 R 中使用 GARCH 模型的人的资源——为什么不要使用 fGarch。...我们希望将我们的检验应用于检测 GARCH 模型中的结构性变化,这是金融时间序列中的常见模型。据我所知,用于 GARCH 模型估计和推断(以及其他工作)的“最新技术” R 包是 fGarch。...特别是,函数 garchFit() 用于从数据中估计 GARCH 模型。但是,当我们尝试在我们的检验中使用此函数时,我们得到了明显病态的数值(我们已经完成了模拟研究以了解预期的行为)。...这告诉我,这种病态行为正在影响人们现在试图估计并在模型中使用的 GARCH 模型。 结论 由 John C....我在本文中强调的问题让我更加意识到选择在优化方法中的重要性。我最初的目标是编写一个函数,用于根据 GARCH 模型中的结构性变化执行统计检验。

6.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    深度 | 在R中估计GARCH参数存在的问题(续)

    本期作者:徐瑞龙 未经授权,严禁转载 本文承接《在 R 中估计 GARCH 参数存在的问题》 在之前的博客《在 R 中估计 GARCH 参数存在的问题》中,Curtis Miller 讨论了 fGarch...包和 tseries 包估计 GARCH(1, 1) 模型参数的稳定性问题,结果不容乐观。...本文承接之前的博客,继续讨论估计参数的稳定性,这次使用的是前文中提到,但没有详尽测试的 rugarch 包。...rugarch 包的使用 rugarch 包中负责估计 GARCH 模型参数的最主要函数是 ugarchfit,不过在调用该函数值前要用函数 ugarchspec 创建一个特殊对象,用来固定 GARCH...rugarch 参数估计的行为 首先使用 1000 个模拟样本做连续估计,样本数从 500 升至 1000。

    2K30

    R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程

    使用线性混合模型根据时间对定义为潜过程的感兴趣量进行建模: 其中: X(t) 和 Z(t) 是协变量的向量(Z(t) 包含在 X(t) 中; β是固定效应(即总体平均效应); ui 是随机效应(即个体效应...这里第一个随机效应 ui的方差设置为 1,平均截距(在 β 中)设置为 0。...为此,可以从估计向量(此处为第 21 个参数)中识别参数的位置: best 并且可以根据这些估计值和新固定的参数重新拟合模型: # 样条曲线 mult(B=mp$best) 有了这个约束,模型就可以正确收敛...模型比较 mult对象是多元潜在过程混合模型,它们假设潜过程的轨迹完全相同,但链接函数不同。在单变量情况下,可以使用信息标准来比较模型。该 summary 给我们这样的信息。...本文选自《R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程》。

    20840

    「R」ggplot2在R包开发中的使用

    在撰写本文时,ggplot2涉及在CRAN上的超过2,000个包和其他地方的更多包!在包中使用ggplot2编程增加了几个约束,特别是如果你想将包提交给CRAN。...尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...有时候在开发R包时为了保证正常运行,不得不将依赖包列入Depdens。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的

    6.7K30

    R语言估计多元标记的潜过程混合效应模型(lcmm)分析心理测试的认知过程|附代码数据

    使用线性混合模型根据时间对定义为潜过程的感兴趣量进行建模: 其中: X(t) 和 Z(t) 是协变量的向量(Z(t) 包含在 X(t) 中; β是固定效应(即总体平均效应); ui 是随机效应(即个体效应...这里第一个随机效应 ui的方差设置为 1,平均截距(在 β 中)设置为 0。...例如,这里的 MMSE 是高度偏斜的: hist(MMSE) ---- R语言如何用潜类别混合效应模型(LCMM)分析抑郁症状 01 02 03 04 在单变量情况下,可以考虑 Beta CDF...为此,可以从估计向量(此处为第 21 个参数)中识别参数的位置: best 并且可以根据这些估计值和新固定的参数重新拟合模型: # 样条曲线 mult(B=mp$best) 有了这个约束,模型就可以正确收敛...请注意,预测和观察是在潜过程的范围内(观察被转换为估计的链接函数): plot(beal, whch="fit", time="ti") ---- 本文选自《R语言估计多元标记的潜过程混合效应模型(lcmm

    53010

    先验扩散: 在单眼深度估计的扩散模型中利用语言先验 !

    作者提出,扩散模型中的语言先验可以通过利用与语言描述对齐的几何先验来增强单目深度估计,这种先验是在文本到图像预训练过程中学习的。...1 Introduction 单目深度估计要求模型从单张图像中预测像素级的深度。...因此,在深度估计中,由人类生成的描述允许模型利用输入文本中嵌入的几何先验知识更有效地感知3D场景。在作者的PriorDiffusion中,在去噪过程中,模型使用图像和语言输入来预测要移除的噪声。...虽然以前的工作只关注使用图像作为扩散模型的条件来预测深度,但作者的 PriorDiffusion 利用语言先验在扩散模型中解决歧义和视觉噪声,并可控地进行3D感知。...在表1中,作者将PriorDiffusion与其他最先进的非线性不变深度估计器进行了定量比较,这些估计器在本文中列出的所有零样本基准测试中进行了测试。

    7410

    R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例|附代码数据

    简单的说,混合模型中把研究者感兴趣的自变量对因变量的影响称为固定效应,把其他控制的情景变量称为随机效应。由于模型中包括固定和随机效应,故称为混合线性模型。...nlme(model=list(fixed=with(c(asymp.R,xmid,scale,asymp.L),...) 右侧渐近线中的方差估计值是非零的。...现在尝试用固定效应分组,使用上面构建的虚拟变量(也可以使用if语句,或者用R[Group[i]]的for循环中的R值向量,或者(最佳选择)为R传递一个模型矩阵...)。...现在我们终于可以测试R以外的参数的固定效应差异了。...诊断图 ##放弃条件模式/样本-R估计值 diagplot1 %+% dp2 也许这暗示了两个实验组中更大的差异?

    92300

    线性混合模型系列四:矩阵求解

    混合线性模型,有两大重点,一是估算方差组分,二是矩阵求解。 估算方差组分有很多方法,最常用的是基于REML的方法。 矩阵求解有两种方法,直接法和间接法。...这篇文章通过R语言代码的形式,介绍给定方差组分的情况下,如何根据两种矩阵求解的方法分别计算BLUE值和BLUP值。 1. 混合模型矩阵求解 混合线性模型 ? BLUE和BLUP计算公式 ? 2....2.2 模型介绍 模型介绍 固定因子:Herd 随机因子:Sire 观测值:Yield 2.3 固定因子矩阵X和随机因子Z 固定因子矩阵X X = model.matrix(~Herd-1,data...随机因子矩阵Z Z = model.matrix(~Sire-1,data=dat) Z ?...对比直接矩阵形式计算的结果 # 固定因子效应值b ? # 随机因子效应值u ? 可以看出,两种矩阵求解方法,结果一致

    1.7K40

    R语言实现混合模型

    普通的线性回归只包含两项影响因素,即固定效应(fixed-effect)和噪声(noise)。噪声是我们模型中没有考虑的随机因素。而固定效应是那些可预测因素,而且能完整的划分总体。...混合模型中包括了固定效应和随机效应,而随机效应有两种方式来影响模型,一种是对截距影响,一种是对某个固定效应的斜率影响。...) X: 固定效应 e: 噪声 混合线性模型有时又称为多水平线性模型或层次结构线性模型由两个部分来决定,固定效应部分+随机效应部分, 二、R语言中的线性混合模型可用包 1、nlme包 这是一个比较成熟的...在优势方面,个人认为它可以处理相对复杂的线性和非线性模型,可以定义方差协方差结构,可以在广义线性模型中定义几种分布函数和连接函数。...在R语言中我们使用mgcv包中的lmer函数来完成这项工作。首先载入faraway包以便读取psid数据集,然后加载mgcv包,再将年份数据中心化以方便解释模型,最后用lmer函数进行建模。

    4.4K70

    HMM模型在量化交易中的应用(R语言版)

    函数形式:X(t+1) = f( X(t) ) HMM由来 物理信号是时变的,参数也是时变的,一些物理过程在一段时间内是可以用线性模型来描述的,将这些线性模型在时间上连接,形成了Markov链。...HMM在波动率市场中的应用 输入是:ATR(平均真实波幅)、log return 用的是depmixS4包 模型的输出并不让人满意。 HS300测试 去除数据比较少的9支,剩291支股票。...(注:横向的数据没有意义!) 同时,如何避免使用某一次比较差的模型?! 这里老王使用的是投票模式。...(同时使用50个HMM模型) 先看看数据: 红圈内的数字表示2010-01-12,有4个HMM投票给600005。 这样就可以使用了2种方案。...,然后在每天入选的股票中平均分配资金 (注:0票就相当于平均分配资金在投票>0的股票上) n=5 n=15 50个HMM模型里10-18个投票,结果都挺理想了!

    2.9K80

    贝叶斯地理统计模型R-INLA-1

    贝叶斯地理统计模型INLA 本次博客主要讲述如何使用R-INLA软件进行空间分析,通过随机嵌套偏微分方程方法和集成的嵌套Laplace渐进法可为潜在高斯随机场模型中的边际分布提供准确而有效的估计。...INLA模型 INLA模型中,空间效应的计算是重点,这里利用每个测量点的经纬度信息 2.1 Mesh格点 主要经纬度转换时候,需要变成Matrix。...为什么要产生Mesh格点,NLA在计算上很有效,因为它使用SPDE(随机偏微分方程)来估计数据的空间自相关。...注意这里的name是w,可以写成spatial feild,意思是每个点对应的空间效应。在这种情况下,我们的空间数据全部在一组中。...2.4 Stack data 在2.1中,我们告知R-INLA我们在网格的哪些顶点具有采样位置,这给了我们投影仪矩阵A.test。 在第2.2节中,我们定义了SPDE模型。

    1.7K20

    转录组的批次效应该如何处理

    欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍批次效应是在处理样本过程中因为技术因素引入的变量。...现在针对来源不同的bulk RNA seq数据有了很多不同的方法或R包校正批次效应,这里我通过实例介绍几类常用的R包实例数据预处理从EBI下载了3个不同批次的小鼠 bulk-RNA raw data (...,前者可以降低测序深度的影响,后者则可以降低批次效应的影响,两个结合使用更利于校正批次效应。...每个细胞的量化因子(size factor)是所有基因与其在所有样品中的表达值的几何平均值的比值的中位数。由于几何平均值的使用,只有在所有样品中表达都不为0的基因才能用来计算。...参考batch effect纵向数据与空间统计学Bioconductor 中的 ExpressionSet 数据类型一文读懂PCA分析 (原理、算法、解释和可视化)ComBat-seq高通量数据中批次效应的鉴定和处理

    23510

    TransformerRanker 高效地为下游分类任务找到最适合的语言模型的工具 !

    在自然语言处理(NLP)的分类任务中,通常的做法是选择一个预训练的语言模型(PLM),然后针对特定下游任务进行微调。...此外,作者证明了在累积各层之间可以增加选择过程的鲁棒性,对每个模型使用不同的预训练目标,从而在多样化的PLM之间进行更好的比较。 迁移性估计的Python库。...作者在CoNLL-03共享任务上为20个语言模型生成的示例排名请参阅图2。 在显示的列表中,最佳估计的模型将位于顶部。...为了管理内存,作者将距离计算和top-k搜索分批处理,消除了存储大量距离矩阵的需求。在作者的实现中,计算使用PyTorch,并在SVD和固定点迭代所需的矩阵乘法上利用GPU进行并行处理。...在该研究中,各种估计器的排名以及层聚合方法与通过完全微调和高参数选择得到的模型进行了比较。为了进行排名比较,作者使用了皮尔逊相关系数ρ和加权肯德尔相关系数τ。

    7710

    贝叶斯时空模型-INLA-4

    贝叶斯地理统计模型R-INLA-4 贝叶斯时空模型 在前述的内容中,我们介绍了,如何处理空间的数据,利用海拔高度预测降雨量的例子。但是该例子仅仅涉及到的是涉及到回归方程中,考虑影响因素及空间效应。...下面我们将介绍贝叶斯时空模型。该文章中,会简化数学计算的过程,主要是针对,在有数据的基础上,如何应用贝叶斯时空模型,找出影响因素,绘制时间变化的空间分布预测图。...这是建立INLA的关键,最后,写INLA的公式,带入INLA模型。 2.1 Mesh 下面我们利用时空模型来分析,看看房屋价格随时间变化,在空间的分布规律。...2.5 参数估计 从这个图,可以看到在我们的INLA模型中,各个参数的先验分布。主要是Range参数,可以提供空间相关性的距离。...因为随时间变化,每一年的空间效应也不一样,也就是INLA回归方程中的残差在空间上分布不均。

    1.1K20

    用SPSS估计HLM多层(层次)线性模型模型|附代码数据

    在反复框保持为空。它仅在分析人员想要为重复测量指定协方差模式时使用 。单击继续。弹出一个新菜单,用于指定模型中的变量。空模型没有自变量,因此将因变量mathach放在适当的框中。...接下来,单击Statistics以选择其他菜单以选择在输出中报告哪些结果。选择参数估计值报告固定效应的估计值。单击继续,然后单击确定。部分结果如下:这些结果对应于R&B中的表4.2。...下一步是估计一种平均数- 结果模型。平均数之结果变项的回归模型在估计空模型之后,R&B开发了一种“平均数结果变项的回归”模型,其中将学校级变量meanses添加到截距模型中。...最后,单击Statistics以选择在输出中报告的内容。选中参数估计值旁边的复选框。单击继续,然后单击确定。输出的一部分如下:这与R&B中的表4.3相对应。下一步是估计随机系数模型。...在“ 固定效应”菜单中,将grp_ses变量置于“ 模型”框中,并确保选中“ 包括截距”。单击继续,然后单击随机。在“ 随机效应”菜单中,将分组变量id放在“ 组合”框中。

    2.5K10

    R语言建立和可视化混合效应模型mixed effect model

    pred.labels =c("(Intercept)", "Urchins", "Fish", "Depth"), 用数据绘制模型估计 我们可以在实际数据上绘制模型估计值!...注意:数据已标准化以便在模型中使用,因此我们绘制的是标准化数据值,而不是原始数据 步骤1:将效应大小估算值保存到data.frame中 # 使用函数。term=固定效应,mod=你的模型。...NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究 R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系 R语言LME4混合效应模型研究教师的受欢迎程度 R语言nlme...LMM) R语言基于copula的贝叶斯分层混合模型的诊断准确性研究 R语言如何解决线性混合模型中畸形拟合(Singular fit)的问题 基于R语言的lmer混合线性回归模型 R语言用WinBUGS...HLM R语言用WinBUGS 软件对学术能力测验建立层次(分层)贝叶斯模型 SPSS中的多层(等级)线性模型Multilevel linear models研究整容手术数据 用SPSS估计HLM

    27820

    R语言建立和可视化混合效应模型mixed effect model|附代码数据

    pred.labels =c("(Intercept)", "Urchins", "Fish", "Depth"),用数据绘制模型估计我们可以在实际数据上绘制模型估计值!...注意:数据已标准化以便在模型中使用,因此我们绘制的是标准化数据值,而不是原始数据步骤1:将效应大小估算值保存到data.frame中# 使用函数。term=固定效应,mod=你的模型。...df:x 使用效应值df绘制估算值如果要保存基本图(仅固定效应和因变量数据),可以将其分解为单独的步骤。...NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系R语言LME4混合效应模型研究教师的受欢迎程度R语言nlme、nlmer...中的多层(等级)线性模型Multilevel linear models研究整容手术数据用SPSS估计HLM多层(层次)线性模型模型

    1.7K00
    领券