首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

腾讯云TKE-GPU案例: TensorFlow 在TKE中的使用

背景 用户在TKE中部署TensorFlow, 不知道如何部署已经如何验证是否可以使用GPU,还是用的cpu....下面主要演示如何部署TensorFlow以及验证TensorFlow在TKE中是否可以使用GPU 在TKE中添加GPU节点 在TKE控制台中添加GPU节点 [GPU] 检查状态: 节点状态为健康说明添加成功...访问测试: [image.png] 获取token 在TKE控制台登陆到TensorFlow 容器中执行一下命令: jupyter notebook list [image.png] 登陆时输入这个token...[image.png] 到目前为止我们的服务部署完成了 验证GPU 在TensorFlow的jupyter web页面中选择new-> python3: [image.png] 输入一下代码: import...此选项会尝试根据运行时分配需求来分配尽可能充足的 GPU 内存:首先分配非常少的内存,但随着程序的运行,需要的 GPU 内存会逐渐增多,于是扩展分配给 TensorFlow 进程的 GPU 内存区域。

2K90

深度学习PyTorch,TensorFlow中GPU利用率较低,CPU利用率很低,且模型训练速度很慢的问题总结与分析

如何定制化编译Pytorch,TensorFlow,使得CNN模型在CPU,GPU,ARM架构和X86架构,都能快速运行,需要对每一个平台,有针对性的调整。...此时,即使CPU为2349%,但模型的训练速度还是非常慢,而且,GPU大部分是时间是空闲等待状态。...导致数据加载慢,GPU利用率浮动,训练慢约4倍;有意思的是,偶然开始训练时,CPU利用率高,可以让GPU跑起来,但仅仅几分钟,CPU利用率降下来就上不去了,又回到蜗牛速度。...在mac arm m1芯片下,开启mkl-dnn,速度比没有开启快4s。44s 与 48s的差别。我们的平台,都是支持mkl-dnn。...没有mkl-dnn,速度比有mkl-dnn编译的模型,慢1.5倍左右。 结论: mkl-dnn有无,对性能影响不是很大,1-2x的影响。

6K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    评测 | 云CPU上的TensorFlow基准测试:优于云GPU的深度学习

    鉴于本人目前并未工作,我必须留意无关花费,并尽可能地具有成本效益。我曾试为了省钱,试过在廉价的 CPU 而不是 GPU 上训练我的深度学习模型,出乎意料的是,这只比在 GPU 上训练略慢一些。...如果在 64 vCPU 上的模型训练速度与 GPU 版本差不多(或者就略慢那么一点),那么用 CPU 来代替 GPU 就是划算的。...在所有的模型中,GPU 实例都应该是最快的训练配置,而且多处理器系统应该比少处理器系统的训练速度更快。 ?...不出意料,在卷积网络上 GPU 的训练速度比任何 CPU 方案快两倍不止,不过成本结构仍然相同,除了 64 vCPU 比 GPU 成本方面更差,32 个 vCPU 训练速度甚至快过 64 个 vCPU。...双向 LSTM 的 GPU 训练速度是任意 CPU 配置的两倍慢?哇。

    2K60

    Reddit热议:为什么PyTorch比TensorFlow更快?

    近日,Reddit 上有一个热帖:为什么 PyTorch 和 TensorFlow 一样快 (有时甚至比 TensorFlow 更快)? ?...但我在网上看到的许多基准测试中,在 GPU 上,PyTorch 都可以轻松地赶上 TensorFlow。...对 torch 函数的 Python 调用将在排队操作后返回,因此大多数 GPU 工作都不会占用 Python 代码。这将瓶颈从 Python 转移到了 CUDA,这就是为什么它们执行起来如此相似。...huberloss (回复 SR2Z): TF 构建了一个执行图,然后由 C++ 后端处理,这意味着你在 Python 中所做的唯一工作就是设置这个图 (至少在 TF1.x 中是这样)。...我想到的另一点是,PyTorch 教程在 CPU 上做数据增强,而 TF 教程在 GPU 上做数据增强 (至少 1-2 年前我看到的教程是这样)。

    1.5K20

    TensorFlow.js 为何引入 WASM 后端

    在前面的一篇文章《TensorFlow.js 微信小程序插件开始支持 WebAssembly》中,我们谈到了 Tensorflow.js(tfjs) 的新后端 WebAssembly(WASM)。...这不是在开历史倒车吗? 查看了 Google 的官方资料后,总结出如下几点理由: 大量的低端移动设备缺乏 WebGL 支持,或者有 GPU 但速度很慢。...而 WASM 是一种跨浏览器工作、可移植汇编和兼容 Web 的二进制文件格式,可在 Web 上实现接近原生代码的执行速度。全球 90%设备 都支持 WASM。 出于速度上的考虑。...从上表可以看出 WASM 后端比普通 JS(CPU)后端快 10-30 倍。...而对于类似 MobileNet、BodyPix 和 PoseNet 的中型模型,WASM 的速度比 WebGL 慢 2-4 倍。

    3.4K10

    Reddit热议:为什么PyTorch比TensorFlow更快?

    最近Reddit的一个帖子引起热议。 近日,Reddit 上有一个热帖:为什么 PyTorch 和 TensorFlow 一样快 (有时甚至比 TensorFlow 更快)? ?...但我在网上看到的许多基准测试中,在 GPU 上,PyTorch 都可以轻松地赶上 TensorFlow。...对 torch 函数的 Python 调用将在排队操作后返回,因此大多数 GPU 工作都不会占用 Python 代码。这将瓶颈从 Python 转移到了 CUDA,这就是为什么它们执行起来如此相似。...huberloss (回复 SR2Z): TF 构建了一个执行图,然后由 C++ 后端处理,这意味着你在 Python 中所做的唯一工作就是设置这个图 (至少在 TF1.x 中是这样)。...我想到的另一点是,PyTorch 教程在 CPU 上做数据增强,而 TF 教程在 GPU 上做数据增强 (至少 1-2 年前我看到的教程是这样)。

    2.6K30

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...安装Ubuntu 大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?...CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。 VGG微调 为Kaggle猫狗识别竞赛而微调一个VGG网络。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。 好啦,关于万元打造一个深度学习系统的分享,就先到这里。

    1.1K41

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...安装Ubuntu 大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?...CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。 VGG微调 为Kaggle猫狗识别竞赛而微调一个VGG网络。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...GTX 1080 Ti比AWS P2 K80快4.3倍。CPU比GPU慢30-50倍。 好啦,关于万元打造一个深度学习系统的分享,就先到这里。 各位端午节快乐。

    1.2K50

    一万元搭建深度学习系统:硬件、软件安装教程,以及性能测试

    CPU 虽然比不上GPU,但CPU也很重要。从预算出发,我选了一颗中端产品英特尔i5 7500。相对便宜,但不会拖慢整个系统。 内存 两条16GB容量的内存,总共是32GB。 硬盘 两块。...安装Ubuntu 大部分深度学习框架都工作在Linux环境中,所以我选择安装Ubuntu。一个2GB容量的U盘就能搞定安装,如何制作?...CPU的表现比GPU慢9倍。有趣的是,i5 7500比亚马逊的虚拟CPU快2.3倍。 VGG微调 为Kaggle猫狗识别竞赛而微调一个VGG网络。...使用相同的batch在CPU上运行这个模型不可行,所以我们在GPU上微调了390个batch,在CPU上是10个batch。...CPU比GPU慢30-50倍。 好啦,关于万元打造一个深度学习系统的分享,就先到这里。

    1.1K60

    云原生分布式深度学习初探

    1 为什么需要分布式深度学习 两大最主要的原因: 数据量在爆炸式增长。 模型复杂度不断增加。 大规模数据以及大型的神经网络结合在很多机器学习的任务上带来了超凡的表现。...在训练深度学习模型的时候,当数据以及参数量变大的时候计算资源是决定我们算法迭代速度的关键要素之一。...SSP折中 允许同步的过程中采用旧的参数进行同步,但旧的参数能够旧到什么程度必须有一个阈值。如果认为比我慢一次迭代的参数,接受它。...并且如果想充分利用GPU算力,需要给足够CPU的核技术预处理,否则GPU没有办法被打满。...这一特性使得Horovod可以非常方便地与主流深度学习框架TensorFlow、PyTorch、 MXNet等进行匹配(在Tensorflow上使用最多),在大规模GPU集群上的训练性能远高于原生框架的训练性能

    1.6K3210

    搭载M1芯片,新Mac再加优化版 Tensorflow2.4,训练速度最高提升7倍

    苹果公司表示,通过利用 macOS Big Sur 上的 ML Compute 框架,TensorFlow 2.4的 Mac 优化版本允许开发人员在 M1 的 8核 CPU 和 8核 GPU 等硬件上加速处理器...(CPU)和图形卡(GPU)的训练。...然而,Rosetta2 转换的应用程序会导致性能下降,有些基准测试的运行速度慢至本地速度的59% 。对于性能敏感的应用程序,可以编译它们并在 M1上运行。...苹果推出的新框架 ML Compute 为在 Mac 上进行 TensorFlow 模型的训练提供了动力,现在你可以在 M1和 Intel 驱动的 Mac 上利用加速的 CPU 和 GPU 进行训练。...谷歌内部人士在一篇博客文章中写道: “凭借 TensorFlow 2,在各种不同平台、设备和硬件上的最佳培训表现,开发人员、工程师和研究人员可以在他们喜欢的平台上工作”,“这些改进,再加上苹果开发者通过

    1.8K10

    开源深度学习平台 TensorFlow、Caffe、MXNet……哪个最适合你

    目录 TensorFlow Theano、Pylearn2 及其生态系统 Torch Caffe CNTK DSSTNE、MXNet 许可 速度 DL4J:为什么用 Java?...(+) 同时支持数据并行和模型并行 (-) 速度比其他框架慢 (-) 比 Torch 笨重许多;更难理解 (-) 已预定型的模型不多 (-) 计算图纯粹基于 Python,所以速度较慢 Theano及其生态系统...这意味着如果你需要在多个 CPU 或 GPU 上训练模型以提高速度,MXNet 是很好的选择。 可扩展性也可能是亚马逊被 MXNet 吸引最大的原因。...Vogels 使用 Inception v3 图像分析算法分析了 MXNet 训练吞吐量的基准,声称通过在多个 GPU 上运行它获得的加速是是呈高度线性的——在128个GPU上,MXNet 的运行速度比在单个...虽然 Java 的速度不及 C 和 C++,但它仍比许多人想象得要快,而我们建立的分布式系统可以通过增加节点来提升速度,节点可以是 GPU 或者 CPU。

    4.7K60

    【深度】TensorFlow or TensorSlow,谷歌基准测试为何不给力?(附Google内部员工测试代码下载)

    Github user:gujunli 既然是用CuDNN v2,那我就不能理解为什么TensorFlow会结果那么慢?你有什么想法吗?...在文章中,GPU只是用来训练而CPU负责产出。 在你训练模型后,从一个观点来看,这只是一堆字节,因此你能够很容易的将其序列化,输入到内存,然后做你想做的事情。原因?...我的猜想是在网络中CPU和GPU之间的数据传输很慢,但是产出并没有训练那样消耗计算。...Reddit user:suki907 看白皮书:相对于我们以往的distbelif的对模型的实现,最终结果是这些努力导致了在训练时间上速度提升了6倍,而且这种速度被证明在新的大型图像识别模型中是不可或缺的...GPU和CPU之间数据传输慢,比较耗时,tensorflow用于分布式系统 4. 个人觉得f/g强烈推荐!

    1.2K40

    秘籍:如何用廉价硬件玩转深度学习,成本不到1000美元

    答:在树莓派上运行TensorFlow成本是39美元;在GPU驱动的亚马逊EC2节点上运行TensorFlow的成本是1美元,每小时。这些都是可行的方案。...CPU 我在网上看了一下CPU评测,感觉慢一点的CPU也够用,因为我要做的事情很少受制于CPU,除了训练神经网络,其他都用GPU。...然后,最重要的是属性可能是显存,如果TensorFlow不能把模型和当前批次的数据装入GPU的显存,就会错误的送到CPU里去。 另一个关键因素是显卡的架构。...目前最新的版本是CUDA 8.0,CudNN 5.1。CUDA是一个API,也是一个编译器,允许其他程序将CPU用于通用应用程序,CudNN是一个旨在使神经网络在GPU上运行更快的库。...搭建神经网络最好玩的事情之一,就是复制Google旗下Deep Dream的工作,不过如果没有GPU的加持这个工作永远也干不完。基本上,这涉及修改输入图像以驱动神经网络中最高响应,这需要很做的工作。

    1.8K100

    使用 TFLite 在移动设备上优化与部署风格转化模型

    与 Gatys 论文中的技术相比,此模型的风格转化速度明显提升,但模型参数量仍然较大 (44 MB),且速度仍然偏慢(Pixel 4 CPU 上为 2340 毫秒)。...因此,我们需要继续优化模型,在移动应用中也适合使用。本文将会分享我们的优化经验,并提供一些资源供您在工作中使用。...这样能达到与原模型相近的效果,而模型的大小显著缩小,速度也大幅提升。 ? * 基于 Pixel 4 CPU 的 2 线程 TensorFlow Lite 的基准测试,2020 年 4 月。...量化是适用于大多数 TensorFlow 模型移动部署的一项重要技术,在本例中,它可将模型大小缩小为原来的 1/4,在大幅加速模型推理的同时,对质量的影响很小。...GPU 通常能比 CPU 达到更好的性能,但 GPU 目前仅支持浮点模型,获得的模型 size 比经 int8 量化的模型稍大。以下是 int8 和 float16 模型的表现: ?

    1.7K20

    美团视觉GPU推理服务部署架构优化实践

    美团视觉智能部通过实验分析发现,造成视觉推理服务GPU利用率低下的一个重要原因是模型结构问题:模型中预处理或者后处理部分CPU运算速度慢,导致推理主干网络无法充分发挥GPU运算性能。...本文将会重点介绍推理服务部署架构优化的工程实践,希望对从事相关工作的同学们有所帮助或启发。 1. 背景 随着越来越多的AI应用进入生产应用阶段,推理服务所需要的GPU资源也在迅速增加。...,CPU处理速度慢导致GPU处于饥饿状态。...结合服务压测的CPU/GPU利用率数据可以看出:预处理部分CPU消耗高、处理速度慢,是推理服务的性能瓶颈。...同样地,CPU运算速度慢会导致GPU利用率低,推理服务存在性能瓶颈。 实际线上服务压测GPU利用率68%,QPS也存在较大优化空间。

    1.2K50

    PyTorch&TensorFlow跑分对决:哪个平台运行NLP模型推理更快

    PyTorch和TensorFlow究竟哪个更快?下面用详细评测的数据告诉你。 运行环境 作者在PyTorch 1.3.0、TenserFlow2.0上分别对CPU和GPU的推理性能进行了测试。...两种不同的环境中具体硬件配置如下: CPU推理:使用谷歌云平台上的n1-standard-32硬件,即32个vCPU、120GB内存,CPU型号为2.3GHz的英特尔至强处理器。...与PyTorch相比,TensorFlow在CPU上通常要慢一些,但在GPU上要快一些: 在CPU上,PyTorch的平均推理时间为0.748s,而TensorFlow的平均推理时间为0.823s。...在GPU上,PyTorch的平均推理时间为0.046s,而TensorFlow的平均推理时间为0.043s。 以上的数据都是在所有模型总的平均结果。...作者仅在基于TensorFlow的自动聚类功能的GPU上使用它,这项功能可编译一些模型的子图。结果显示: 启用XLA提高了速度和内存使用率,所有模型的性能都有提高。

    90710
    领券