首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

浅谈ACL(访问控制列表)

ACL(访问控制列表)是应用在路由器接口的指令列表。这些指令列表用来告诉路由器,那些数据包可以接收,那些数据包需要拒绝。 基本原理为:ACL使用包过滤技术,在路由器上读取OSI七层模型的第三层及第四层包头中的信息,如源地址、目的地址、源端口、目的端口等,根据预先定义好的规则,对包进行过滤,从而达到访问控制的目的。 ACL通过在路由器接口处控制数据包是转发还是丢弃来过滤通信流量。 路由器根据ACL中指定的条件来检测通过路由器的数据包,从而决定是转发还是丢弃数据包。 ACL有三种类型: 1、标准ACL:根据数据包的源IP地址来允许或拒绝数据包。标准ACL的访问控制列表号是1~99。 2、扩展ACL:根据数据包的源IP地址、目的IP地址、指定协议、端口和标志来允许或拒绝数据包。扩展ACL的访问控制列表号是100~199. 3、命名ACL允许在标准ACL和扩展ACL中使用名称代替表号。 ACL依靠规则对数据包执行检查,而这些规则通过检查数据包中的指定字段来允许或拒绝数据包。ACL通过五个元素来执行检查,这些元素位于IP头部和传输层头部中。他们分别是源IP地址、目标IP地址、协议、源端口及目标端口。

03

【技术综述】人脸表情识别研究

随着机器学习和深度神经网络两个领域的迅速发展以及智能设备的普及,人脸识别技术正在经历前所未有的发展,关于人脸识别技术讨论从未停歇。目前,人脸识别精度已经超过人眼,同时大规模普及的软硬件基础条件也已具备,应用市场和领域需求很大,基于这项技术的市场发展和具体应用正呈现蓬勃发展态势。人脸表情识别(facial expression recognition, FER)作为人脸识别技术中的一个重要组成部分,近年来在人机交互、安全、机器人制造、自动化、医疗、通信和驾驶领域得到了广泛的关注,成为学术界和工业界的研究热点。本文将对人脸识别中的表情识别的相关内容做一个较为详细的综述。

04

burpsuite检测xss漏洞 burpsuite实战指南

XSS(跨站脚本攻击)漏洞是Web应用程序中最常见的漏洞之一,它指的是恶意攻击者往Web页面里插入恶意html代码,当用户浏览该页之时,嵌入其中Web里面的html代码会被执行,从而达到恶意攻击用户的特殊目的,比如获取用户的cookie,导航到恶意网站,携带木马等。根据其触发方式的不同,通常分为反射型XSS、存储型XSS和DOM-base型XSS。漏洞“注入理论”认为,所有的可输入参数,都是不可信任的。大多数情况下我们说的不可信任的数据是指来源于HTTP客户端请求的URL参数、form表单、Headers以及Cookies等,但是,与HTTP客户端请求相对应的,来源于数据库、WebServices、其他的应用接口数据也同样是不可信的。根据请求参数和响应消息的不同,在XSS检测中使用最多的就是动态检测技术:以编程的方式,分析响应报文,模拟页面点击、鼠标滚动、DOM 处理、CSS 选择器等操作,来验证是否存在XSS漏洞。

03

Greenplum使用TPC-H测试过程及结果

TPC-H 基准测试是由 TPC-D(由 TPC 组织于 1994 年指定的标准,用于决策支持系统方面的测试基准)发展而来的.TPC-H 用 3NF 实现了一个数据仓库,共包含 8 个基本关系,其数据量可以设定从 1G~3T 不等。TPC-H 基准测试包括 22 个查询(Q1~Q22),其主要评价指标是各个查询的响应时间,即从提交查询到结果返回所需时间.TPC-H 基准测试的度量单位是每小时执行的查询数( QphH@size),其中 H 表示每小时系统执行复杂查询的平均次数,size 表示数据库规模的大小,它能够反映出系统在处理查询时的能力.TPC-H 是根据真实的生产运行环境来建模的,这使得它可以评估一些其他测试所不能评估的关键性能参数.总而言之,TPC 组织颁布的TPC-H 标准满足了数据仓库领域的测试需求,并且促使各个厂商以及研究机构将该项技术推向极限。

02

Greenplum使用TPC-H测试过程及结果

TPC-H 基准测试是由 TPC-D(由 TPC 组织于 1994 年指定的标准,用于决策支持系统方面的测试基准)发展而来的.TPC-H 用 3NF 实现了一个数据仓库,共包含 8 个基本关系,其数据量可以设定从 1G~3T 不等。TPC-H 基准测试包括 22 个查询(Q1~Q22),其主要评价指标是各个查询的响应时间,即从提交查询到结果返回所需时间.TPC-H 基准测试的度量单位是每小时执行的查询数( QphH@size),其中 H 表示每小时系统执行复杂查询的平均次数,size 表示数据库规模的大小,它能够反映出系统在处理查询时的能力.TPC-H 是根据真实的生产运行环境来建模的,这使得它可以评估一些其他测试所不能评估的关键性能参数.总而言之,TPC 组织颁布的TPC-H 标准满足了数据仓库领域的测试需求,并且促使各个厂商以及研究机构将该项技术推向极限。

06

利用无创性头皮脑电图可以快速定位神经静默

一种快速、经济、非侵入性的检测和表征神经静默的工具在诊断和治疗许多疾 病方面具有重要的益处。我们提出了一种名为SilenceMap的算法,用于使用非侵入性头皮脑电图(EEG)信号揭示电生理信号或神经静默的缺失。通过考虑不同来源对记录信号功率的贡献,并使用半球基线方法和凸谱聚类框架,SilenceMap允许使用相对少量的EEG数据快速检测和定位大脑中的静默区。SilenceMap在使用不到3分钟的脑电图记录(13、2和11 mm对25、62和53 mm)以及对基于真实人体头部模型的100个不同模拟静默区域(12±0.7 mm对54±2.2 mm)进行估计方面,大大优于现有的源定位算法。SilenceMap为可访问的早期诊断和持续监测人类皮质功能的改变的生理特性铺平了道路。 1.简述 本文利用数据相对较少的头皮脑电(EEG)信号,为神经静默的非侵入性检测提供了理论和实验支持。我们采用静默或静默区域这一术语来指代大脑组织中神经活动很少或没有活动的区域。这些区域反映缺血、坏死或病变组织、切除的组织(例如,癫痫手术后)或肿瘤。皮质扩散去极化(CSD)也出现动态静默区,这是大脑皮层缓慢传播的静默波。 脑电图被越来越多地用于诊断和监测神经疾病,如中风和脑震荡。用于检测脑损伤的常用成像方法(例如磁共振成像(MRI)或计算机断层扫描)不是便携式的,不是为连续(或频繁)监视而设计的,在许多紧急情况下难以使用,甚至可能在许多国家的医疗机构中不可用。然而,许多医学场景可以受益于便携式、频繁/持续的神经静默监测,例如,检测肿瘤或病变大小/位置和CSD传播的变化。然而,非侵入性头皮脑电图在紧急情况下可以广泛使用,甚至可以在现场部署,但只有几个限制。与其他成像方式相比,它安装简单快捷,携带方便,成本较低。此外,与MRI不同的是,EEG可以从体内植入金属物体的患者身上记录下来,例如起搏器。 源定位VS静默定位。脑电图的一个持续挑战是源定位,即根据头皮脑电图记录确定潜在神经活动的位置的过程。挑战主要来自三个问题:(i)问题的性质不明确(传感器很少,源的可能位置很多);(ii)大脑和头皮之间的距离和层的空间低通滤波效应;以及(iii)噪声,包括外部噪声、背景脑活动以及伪像,例如心跳、眼球运动和咬合下巴。在应用于神经科学数据的源定位范例中,例如在事件相关电位范例中,头皮EEG信号在事件相关试验上聚集以求出背景脑活动和噪声的平均值,从而允许提取跨试验一致的信号活动。静默区的定位带来了额外的挑战,其中最重要的是如何处理背景脑活动:虽然在源定位中它通常与噪声归为一类(例如,有文章指出:“脑电数据总是受到噪声的污染,例如,外源性噪声和背景脑活动”),在静默定位中,估计背景活动存在的位置是直接感兴趣的,因为静默定位的目标是将正常的大脑活动(包括背景活动)从异常静默中分离出来。因为源定位忽略了这种区别,正如我们在下面的实验结果中所展示的那样,经典的源定位技术,例如多信号分类(MUSIC)、MNE(MNE)和标准化低分辨率脑电磁层析成像(SLORETA),即使在适当的修改之后,也不能定位大脑中的静默(“方法”详细说明了我们对这些算法的修改)。 为了避免平均背景活动,我们估计了每个源对所有电极上记录的EEG的贡献。这一贡献是以平均功率感而不是平均值来衡量的,因此保留了背景脑活动的贡献。我们的静默定位算法,称为SilenceMap,估计这些贡献,然后使用工具量化我们对静默区域的假设(连续、静默区域的小尺寸,并且仅位于一个半球)来定位它。正因为如此,另一个不同之处出现了:静默定位可以使用更多的时间点(比典型的源定位)。例如,采样频率为512 Hz的160秒数据为SilenceMap提供了大约81,920个要使用的数据点,提高了信噪比(SNR),而源定位技术通常仅依赖于几十个与事件相关的试验来平均和提取跨试验一致的源活动。 此外,我们还面临两个额外的困难:缺乏背景脑活动的统计模型,以及参考电极的选择。第一种情况是通过包括基线记录(在没有静默的情况下;我们在实验结果中没有基线)或利用半球基线来处理第一种情况,即在相对于纵向裂缝对称放置的电极上测得的功率大致相等(见图1B)。虽然这里使用的半球基线提供了相当精确的重建,但我们注意到这个基线只是一个近似值,实际的基线有望进一步提高精度。第二个困难是相关的:为了在功率上保持这种近似的半球对称性,最好利用纵裂顶部的参比电极(见图1A)。利用这些改进,我们提出了一种迭代算法,使用相对较少的数据来定位大脑中的静默区。在模拟和真实数据分析中,SilenceMap在定位准确性方面优于现有的算法,该算法仅使用128个电极上160秒的脑电信号来定位三名接受手术切除的参与者的静默区域。 2.结果 SilenceMap通过两个步骤定位静默区:(1)第一步在低分辨率源网格中找到一个连续的静默区,假设在此分辨率下,源在空间上是不相关的。在这个低分辨率的网格中,

02

扫码

添加站长 进交流群

领取专属 10元无门槛券

手把手带您无忧上云

扫码加入开发者社群

相关资讯

热门标签

活动推荐

    运营活动

    活动名称
    广告关闭
    领券