首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在matplotlib中同时显示两个图,而不是一个接一个

,可以通过创建一个包含两个子图的画布来实现。

首先,导入matplotlib库和numpy库:

代码语言:txt
复制
import matplotlib.pyplot as plt
import numpy as np

然后,创建一个包含两个子图的画布,并设置子图的布局:

代码语言:txt
复制
fig, (ax1, ax2) = plt.subplots(1, 2)

接下来,可以在每个子图上绘制不同的图形。例如,在第一个子图上绘制一个正弦函数图像:

代码语言:txt
复制
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)
ax1.plot(x, y)
ax1.set_title('Sin Function')

在第二个子图上绘制一个余弦函数图像:

代码语言:txt
复制
y = np.cos(x)
ax2.plot(x, y)
ax2.set_title('Cos Function')

最后,显示图形:

代码语言:txt
复制
plt.show()

这样就可以同时显示两个图,而不是一个接一个地显示。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【5分钟玩转Lighthouse】Python绘制图表

    __version__)" # 会输出显示matplotlib的版本号,即安装成功 $ 3.3.2 0x04 Matplotlib示例——数据统计图 本节介绍下最常用的统计图类的绘制示例。...示例——多函数曲线 除了已有数据的统计图,我们还可用Matplotlib绘制函数曲线图,并且同时绘制多个曲线。...通过subplots()定义图表(即Figure),每个Figure可以包括多个子图(subplot),在定义时可以通过第一个参数指定子图的数量。这里我们用绘制3个图然后分别执行plot()方法。...0x06 小结 相信看到这里,你已经对在Lighthouse云服务器上如何用Python/Matplotlib等工具绘图有了基本的认识和掌握,是不是感觉蛮有意思的呢?...其实Matplotlib功能非常强大,还有对散点图、热度图、3D图等多种支持,甚至还可以保存绘制过程为动图/视频,更加直观的显示数据之间的关系。

    10.1K4617

    python数据科学系列:matplotlib入门详细教程

    调用pyplot,而是在pyplot中调用matplotlib,略显本末倒置?...其中有两个需要重点指出:figure和axes,其中前者为所有绘图操作定义了顶层类对象Figure,相当于是提供了画板;而后者则定义了画板中的每一个绘图对象Axes,相当于画板内的各个子图。...的替代包名,那么也该是pylab而不是pyplot 简单地讲,以后也不用import numpy 和 import matplotlib.pyplot了,直接import matplotlib.pylab...),创建一个figure对象和相应数量的axes对象,同时返回该figure对象和axes对象嵌套列表,并默认选择最后一个子图作为"当前"图 ?...应用plt.GridSpec实现复杂多子图绘制 05 自定义配置 实际上,前述在配置图例过程中,每次绘制都需要进行大量自定义代码设置(这也是matplotlib的一个短板),在少量绘图工作时尚可接受,但在大量相似绘图存在重复操作时

    2.7K22

    这种两个Colorbar的图形怎么绘制?这样做真的超简单...

    前言 一、「绘图技巧」 :如何在同一个图形上显示两个colorbar 二、可视化学习圈子是干什么的? 三、系统学习可视化 四、猜你喜欢 前言 我们的数据可视化课程已经上线啦!!...「绘图技巧」 :如何在同一个图形上显示两个colorbar 今天我们的学员交流群里有人咨询: 如何在一个图形中同时显示两个Colorbar?特别是在绘制地图的时候。...其实,这个技巧在我们课程新增的案例里就有类似的内容,今天就Python语言中Matplotlib工具,简单给大家介绍下,同时绘制两个colorbar的绘图技巧 Matplotlib 两个Colorbar...添加 在Matplotlib中,绘制两个甚至多个colorbar的核心技巧可以总结为以下两点: 绘制colorbar位置部分 使用fig.colorbar()函数映射正确的数值和绘图对象 绘制colorbar...位置部分 这一个操作一般都是使用Matplotlib中画布对象fig的*add_axes()*, 该函数的主要作用是Matplotlib中用于在图形(Figure)上添加新的坐标轴(Axes)的方法之一

    32010

    【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)

    7.2 在 PyQt5 中嵌入 matplotlib 图表 为了在 PyQt5 应用中显示 matplotlib 图表,我们需要使用 matplotlib 的 FigureCanvas。...7.4 在应用程序中展示不同类型的图表 matplotlib 支持多种类型的图表,包括折线图、柱状图、饼图等。接下来我们展示如何在 PyQt5 中展示这些不同类型的图表。...通过 matplotlib 的强大功能,我们能够在应用程序中展示折线图、柱状图、饼图等多种类型的图表。同时,我们还展示了如何动态更新图表,并结合用户输入来实时调整图表内容。...它可以显示简单的提示信息、警告、错误消息,甚至让用户在多种选项中做出选择。...7-8部分总结:图表与对话框 在第7至第8部分中,我们探讨了如何在 PyQt5 中使用 matplotlib 实现数据的可视化,并展示了如何在界面中嵌入折线图、柱状图、饼图等多种图表。

    64111

    那些不为人知的优秀python可视化库

    应该把Seaborn视为matplotlib的补充,而不是替代物。同时它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。...这两个绘图包的底层依旧是matplotlib,因此,在引用时别忘了使用%matplotlib inline语句。值得一说的是plotnine也移植了ggplot2中良好的配置语法和逻辑。...使用HoloViews,您通常可以在极少数代码中表达您想要做的事情,让您专注于您想要探索和传达的内容,而不是绘图过程。...另外,它不仅为各种数据提供了快速可交互式的图形显示,同时也提供了用于快速开发应用程序的各种小工具,如属性树、流程图等小部件,在数学、科学和工程领域都有着广泛的应用。...在数据的可视化方面,对于逐点刷新的情况也是比较多的,如在温度采集的时候,可能需要采集到一个点就要实时显示一个点,而前面的点不能丢掉,当显示满一屏时,整个波形向左逐点推进,右侧再填充显示一个新的数据点,给人一种整幅图形是向左逐点移动的显示效果

    3K10

    手把手教你用matplotlib绘制柱状图

    关于matplotlib可以参考【引用-2】、【引用-3】。 对于新手而言:其上手难度低,仅需要几行代码就可以创建一个发表质量的图片,而且同时支持静态和动态图片。...关于Matplotlib模块 在Matplotlib绘图库中有很多可视化模块功能,pyplot应该是算是最常被使用的一个类,下面我们就开始使用pyplot来作为实践,绘制一个柱状图,关于柱状图可以参考【...import matplotlib.pyplot import numpy 为了后续方便使用,我们在通常情况下都会给库起一个别名,例如matplotlib.pyplot可以使用as方式起一个别名,名称为...import matplotlib.pyplot as plt import numpy as np (2)绘制柱状图 从官方文档中我们可以看到如何定义一个柱状图,这个函数的返回值为一个容器。...问题分析 I 关于中文支持 Matplotlib 中文显示不是特别友好,要在 Matplotlib 中显示中文,我们可以通过两个方法 设置 Matplotlib 的字体参数。

    80001

    7 款 Python 数据图表工具的比较

    另外一方面,你可以使用 matplotlib 几乎做出任何的曲线,这是因为它十分的灵活,而灵活的代价就是非常难于使用。 我们首先通过做出一个柱状图来显示不同的航空公司的航线长度分布。...正如我们看到的,航空公司倾向于运行近距离的短程航线,而不是远距离的远程航线。 使用 seaborn 我们可以利用 seaborn 来做类似的描点,seaborn 是一个 Python 的高级库。...一个核心的密度期望是一个曲线 —— 本质上是一个比柱状图平滑一点的,更容易看出其中的规律的曲线。 ? ? 正如你所看到的那样,seaborn 同时有着更加好看的默认风格。...这个图实际上不是一个图像--它是一个 JavaScript 插件。因此,我们在下面展示的是一幅屏幕截图,而不是真实的表格。 有了它,我们可以放大,看哪一趟航班的飞行路线最长。...然后我们可以在 Pygal 的水平条形图里把每一个都绘成条形图: ? 首先,我们创建一个空图。然后,我们添加元素,包括标题和条形图。每个条形图通过百分比值(最大值是100)显示出该类路由的使用频率。

    2.6K100

    Python数据可视化的10种技能

    单变量分析指的是一次只关注一个变量。比如我们只关注“身高”这个变量,来看身高的取值分布,而暂时忽略其他变量。 多变量分析可以让你在一张图上可以查看两个以上变量的关系。...散点图 散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。当然,除了二维的散点图,我们还有三维的散点图。...而 Seaborn 呈现的是个正方形,而且不仅显示出了散点图,还给了这两个变量的分布情况。 Matplotlib 绘制: ? Seaborn 绘制: ?...蜘蛛图 蜘蛛图是一种显示一对多关系的方法。在蜘蛛图中,一个变量相对于另一个变量的显著性是清晰可见的。 假设我们想要给王者荣耀的玩家做一个战力图,指标一共包括推进、KDA、生存、团战、发育和输出。...最后我们在相应的位置上显示出属性名。这里需要用到中文,Matplotlib 对中文的显示不是很友好,因此我设置了中文的字体 font,这个需要在调用前进行定义。

    2.8K20

    在Python中用Seaborn美化图表的3个示例

    关于为什么我更喜欢Seaborn而不是其他第三方库的原因: Seaborn与Matplotlib比需要少得多的代码就可以生成类似的高质量输出 Chartifys的视觉效果不是很好(Spotify-有点太笨拙了...ggplot似乎不是Python固有的,所以感觉我一直在努力使它对我有用。 Plotly有一个“社区版本”,这让我对这部分未来是否许可有一定担忧,因此我通常会远离这些内容。...图表两个侧面分布非常适合从视觉上观察边缘分布,而面积图非常适合识别密度较大的区域。 ?...图2:两个随机变量的联合分布 我在研究和文章中都使用了这种图,因为它使我能够将单变量动力学(带有内核图)和联合动力学保持在我的思想和观察的最前沿:所有这些都在传达我所经历的思考。...箱形图得到了广泛的使用,它是一种显示可靠的指标的有效方法,例如中位数和四分位数范围,它们对于异常值(由于其较高的分解点)具有更大的弹性, Seaborn的箱形图实施方式看起来很棒,因为它可以突出显示多个维度来传达一个相当复杂的指标

    1.3K20

    matplotlib绘制常见统计图形(一)

    如果遇到中文无法显示的问题,可以参考本次推送的次条文章。 ? 参数含义如下: ? 说明两点。一是上面代码中我们用plt.text为柱体添加了文字标签。...此时需要用height参数而不是width来控制柱体的“高度”,相应的数字标签的坐标也需要重新设置,其余的参数和前面一致。 堆积柱形图 堆积柱状图本质上还是柱状图,所以还是使用bar和barh函数。...但是要在原来的基础上再堆起来一个,所以需要调用两次绘图函数,并且在第二次调用的时候通过bottom参数和left参数指定需要堆叠。例子如下: 垂直方向堆积 ? 水平方向堆积 ? 正负堆积 ?...下面代码同时指定了pctdistance和labeldistance控制百分比和文本标签显示的位置,它们的数值是相对于半径而言的。 ?...图例设置时,指定了图例元素和文字标签,用bbox_to_anchor将图例显示在饼图之外,四个参数的前两个是图例的起始坐标,后两个是宽度和高度,由于loc设置为center left,意味着(0.91,

    1.7K20

    Python Seaborn综合指南,成为数据可视化专家

    在本文中,我们将了解什么是seaborn以及为什么应该使用它而不是matplotlib。然后我们将使用seaborn在Python中为数据生成各种不同的可视化。 目录 什么是Seaborn?...相信我,这在数据科学中不是一件容易的事。 如果Matplotlib"试图让简单的事情变得简单,而让困难的事情变得可能",那么seaborn也尝试让一组定义良好的困难事情变得简单。...用分类数据绘图 抖动图 Hue图 箱线图 小提琴图 Pointplot 在上面的小节中,我们了解了如何使用不同的视图表示来显示多个变量之间的关系。我们绘制了两个数值变量之间的关系图。...在本节中,我们将看到两个变量之间的关系。例子中的数据是已分类的(分为不同的组)。 我们将使用seaborn库的catplot()函数来绘制分类数据图。...我们还可以在其中添加一个加固图,而不是使用KDE(核密度估计),这意味着在每次观察时,它都会画一个小的垂直标尺。

    2.8K20

    深度讲解Matplotlib库

    1.3 坐标系 & 子图 一幅图 (Figure) 中可以有多个坐标系 (Axes),那不是说一幅图中有多幅子图 (Subplot),因此坐标系和子图是不是同样的概念?...两个属性一起用,那么得到的图的像素为 (w*dpi, h*dpi) 套用在下面代码中,我们其实将图的大小设置成 16×6 平方英寸,而像素设置成 (1600, 600),因为 dpi = 100。...用两个坐标系;2. 用两幅子图。 ? ? S&P500 的量纲都是千位数,而 VIX 的量刚是两位数,两者放在一起,那可不是 VIX 就像一条水平线一样。...API 要求的格式,比如「欧元美元」用 EURUSD=X,而不是市场常见的 EURUSD,而「美元日元」用 JPY=X 而不是 USDJPY。...3.4 折线图 折线图 (line chart) 显示随时间而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。

    1.9K41

    【深度学习】 Python 和 NumPy 系列教程(十三):Matplotlib详解:1、2d绘图(上):折线图、散点图、柱状图、直方图、饼图

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...__version__) 三、Matplotlib详解 Matplotlib是一个用于创建数据可视化的Python库。...多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。...无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。它广泛应用于各个领域,如数据科学、机器学习、金融分析、工程可视化等。 1、2d绘图类型 0....散点图(Scatter Plot) 用于显示两个变量之间的关系和分布 import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5]

    17010

    万字长文盘点python的Matplotlib使用 | 【推荐收藏】

    1.3 坐标系 & 子图 一幅图 (Figure) 中可以有多个坐标系 (Axes),那不是说一幅图中有多幅子图 (Subplot),因此坐标系和子图是不是同样的概念?...两个属性一起用,那么得到的图的像素为 (w*dpi, h*dpi) 套用在下面代码中,我们其实将图的大小设置成 16×6 平方英寸,而像素设置成 (1600, 600),因为 dpi = 100。...用两个坐标系;2. 用两幅子图。 ? ? S&P500 的量纲都是千位数,而 VIX 的量刚是两位数,两者放在一起,那可不是 VIX 就像一条水平线一样。...API 要求的格式,比如「欧元美元」用 EURUSD=X,而不是市场常见的 EURUSD,而「美元日元」用 JPY=X 而不是 USDJPY。...3.4 折线图 折线图 (line chart) 显示随时间而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。

    3K21

    Python中得可视化:使用Seaborn绘制常用图表

    在这里,曲线(KDE)显示在分布图上的是近似的概率密度曲线。 与matplotlib中的直方图类似,在分布方面,我们也可以改变类别的数量,使图更容易理解。...如果我们想在代码中只看到散点图而不是组合图,只需将其改为“scatterplot” 回归曲线 回归图在联合图(散点图)中建立了2个数值参数之间的回归线,并有助于可视化它们的线性关系。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。...热图的最终目的是用彩色图表显示信息的概要。它利用了颜色强度的概念来可视化一系列的值。 我们在足球比赛中经常看到以下类型的图形, ? 足球运动员的热图 在Seaborn中创建这个类型的图。...带有一些自定义的热图代码 在我们给出“annot = True”的代码中,当annot为真时,图中的每个单元格都会显示它的值。如果我们在代码中没有提到annot,那么它的默认值为False。

    6.7K30

    数据可视化基础与应用-04-seaborn库从入门到精通01-02

    在幕后,seaborn处理从数据框架中的值到matplotlib能够理解的参数的转换。这种声明性方法使您能够将注意力集中在想要回答的问题上,而不是集中在如何控制matplotlib的细节上。...要增加或减少matplotlib图形的大小,您可以在全局rcParams中设置整个图形的宽度和高度,同时设置图形(例如使用matplotlib.pyplot.subplots()的figsize参数),...其次,这些参数,高度和方面,在matplotlib中参数化的大小与宽度、高度略有不同(使用seaborn参数,宽度=高度*方面)。最重要的是,这些参数对应于每个子图的大小,而不是整个图形的大小。...结果是,你可以分配面形变量,而不需要停下来考虑如何调整总图形大小。缺点是,当您确实想要更改图形大小时,您需要记住,事情的工作方式与在matplotlib中的工作方式略有不同。...seaborn中两个重要的标绘函数不完全适合上面讨论的分类方案。这些函数jointplot()和pairplot()使用来自不同模块的多种图来在单个图中表示数据集的多个方面。

    22410

    【干货】一文掌握Matplotlib的使用方法

    1.3 坐标系 & 子图 一幅图 (Figure) 中可以有多个坐标系 (Axes),那不是说一幅图中有多幅子图 (Subplot),因此坐标系和子图是不是同样的概念?...两个属性一起用,那么得到的图的像素为 (w*dpi, h*dpi) 套用在下面代码中,我们其实将图的大小设置成 16×6 平方英寸,而像素设置成 (1600, 600),因为 dpi = 100。...用两个坐标系;2. 用两幅子图。 ? ? S&P500 的量纲都是千位数,而 VIX 的量刚是两位数,两者放在一起,那可不是 VIX 就像一条水平线一样。...API 要求的格式,比如「欧元美元」用 EURUSD=X,而不是市场常见的 EURUSD,而「美元日元」用 JPY=X 而不是 USDJPY。...3.4 折线图 折线图 (line chart) 显示随时间而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势。

    2.3K31

    五分钟入门数据可视化

    单变量可视化视图: 一次值关注一个变量。如我们一次只关注身高变量,来看身高的取值分布,而暂时忽略其他变量。...多变量可视化视图: 可以让一张图同时查看两个以上的变量,比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出这两个变量之前是否存在某种联系...Matplotlib seaborn: ? seaborn 饼图 饼图是常用的统计学模块,可以显示每个部分大小与总和之间的比例。在 Python 数据可视化中,它用的不算多。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。...Matplotlib 总结 在 Python 生态系统中绘制数据是一件好事也是一件坏事。绘制数据的工具有很多可供选择既是一件好事也是一件坏事,尽力搞清楚哪一个工具适合你取决于你要实现什么。

    2.7K30
    领券