encoding本质上都是利用类别和标签之间的某种统计特征来代替原始的类别,从而使得无法直接处理类别的模型可以在编码后的结果上正常运行。...对于一列有N种取值的特征,Onehot方法会创建出对应的N列特征,其中每列代表该样本是否为该特征的某一种取值。因为生成的每一列有值的都是1,所以这个方法起名为Onehot特征。...Dummy特征也是一样,只是少了一列,因为第N列可以看做是前N-1列的线性组合。但是在离散特征的特征值过多的时候不宜使用,因为会导致生成特征的数量太多且过于稀疏。...Scikit-learn中也提供来独热编码函数,其可以将具有n_categories个可能值的一个分类特征转换为n_categories个二进制特征,其中一个为1,所有其他为0在category_encoders...({'ID':[1,2,3,4,5,6],
'RATING':['G','B','G','B','B','G']})
# 使用binary编码的方式来编码类别变量