首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python数据分析实战之技巧总结

—— Pandas的DataFrame如何固定字段排序 —— 保证字段唯一性应如何处理 —— 透视表pivot_table函数转化长表注意问题 ——Pandas的DataFrame数据框存在缺失值NaN....分项名称==L_TYPE_day[i]] df2[L_TYPE_day[i]]=list(df_empty_day["用电量"]) 存在NaN值如何保证完整序列,数据结构如下 ?...Q4、数据运算存在NaN如何应对 需求:pandas处理多列相减,实际某些元素本身为空值,如何碰到一个单元格元素为空就忽略了不计算,一般怎么解决!...Q5、如何对数据框进行任意行列增、删、改、查操作 df1=df.copy() #复制一下 # 增操作 #普通索引,直接传入行或列 # 在第0行添加新行 df1.loc[0] = ["F","1月",...N/A"),key不存在时,返回一个默认值dict_1[7]="G" #以列表形式存放元组中,用dict()转换 test_dict=([8,"H"],[9,"I"]) dict_1=dict(test_dict

2.4K10

python下的Pandas中DataFrame基本操作(二),DataFrame、dict、array构造简析

其实,DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。...2001 Ohio 1.7 three 2002 Ohio 3.6 four 2001 Nevada 2.4 five 2002 Nevada 2.9 需要注意的是:将列表或数组赋值给某个列时...:第一种是两个不同列表转换成一个数据框,第二种是一个包含不同子列表的列表转换成为数据框。...7 3 4 8 第二种:将包含不同子列表的列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns

4.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析】数据缺失影响模型效果?是时候需要missingno工具包来帮你了!

    数据探索和预处理是任何数据科学或机器学习工作流中的重要步骤。在使用教程或训练数据集时,可能会出现这样的情况:这些数据集的设计方式使其易于使用,并使所涉及的算法能够成功运行。...数据丢失的原因很多,包括传感器故障、数据过时、数据管理不当,甚至人为错误。丢失的数据可能以单个值、一个要素中的多个值或整个要素丢失的形式出现。...这是在条形图中确定的,但附加的好处是您可以「查看丢失的数据在数据框中的分布情况」。 绘图的右侧是一个迷你图,范围从左侧的0到右侧数据框中的总列数。上图为特写镜头。...接近正1的值表示一列中存在空值与另一列中存在空值相关。 接近负1的值表示一列中存在空值与另一列中存在空值是反相关的。换句话说,当一列中存在空值时,另一列中存在数据值,反之亦然。...如果在零级将多个列组合在一起,则其中一列中是否存在空值与其他列中是否存在空值直接相关。树中的列越分离,列之间关联null值的可能性就越小。

    4.8K30

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    3、导入表格 默认情况下,文件中的第一个工作表将按原样导入到数据框中。 使用sheet_name参数,可以明确要导入的工作表。文件中的第一个表默认值为0。...使用index_col参数可以操作数据框中的索引列,如果将值0设置为none,它将使用第一列作为index。 ?...6、查看DataFrame中的数据类型 ? 三、分割:即Excel过滤器 描述性报告是关于数据子集和聚合的,当需要初步了解数据时,通常使用过滤器来查看较小的数据集或特定的列,以便更好的理解数据。...8、筛选不在列表或Excel中的值 ? 9、用多个条件筛选多列数据 输入应为列一个表,此方法相当于excel中的高级过滤器功能: ? 10、根据数字条件过滤 ?...默认方法; outer——当左侧或右侧DataFrame中存在匹配时,返回所有记录。 ? 以上可能不是解释这个概念的最好例子,但原理是一样的。

    8.4K30

    Python代码实操:详解数据清洗

    (df) 通过Pandas生成一个6行4列,列名分别为'col1'、'col2'、'col3'、'col4'的数据框。...,或使用 pandas.read_csv、pandas.read_table、pandas.read_clipboard 等方法读取文件或剪贴板创建数据框。...当列中含有极大值或极小值的 inf 或 -inf 时,会使得 mean() 这种方法失效,因为这种情况下将无法计算出均值。...先通过 df.copy() 复制一个原始数据框的副本,用来存储Z-Score标准化后的得分,再通过 df.columns 获得原始数据框的列名,接着通过循环判断每一列中的异常值。...判断方法为 df.duplicated(),该方法中两个主要的参数是 subset 和 keep。 subset:要判断重复值的列,可以指定特定列或多个列。默认使用全部列。

    5K20

    小白也能看懂的Pandas实操演示教程(下)

    5 pandas实现SQL操作 pandas实现对数据的增删改查 增:添加新行或增加新列 dict={'Name':['LiuShunxiang','Zhangshan'], 'Sex':['...6 对缺失值的处理 现实中的数据存在很多噪音的同时,缺失值也非常的常见。缺失值的存在会影响后期的数据分析或挖掘工作,那么缺失值的处理有哪些方法呢?...使用填充法时,相对于常数填充或者前项、后项填充,使用各列众数,均值或中位数填充要更加合理些,这也是工作中常用的一个快捷手段。...8 多层索引的使用 接下再讲一个Pandas中的重要功能,那就是多层索引。 序列的多层索引类似于Excel中如下形式。 ?...在数据框中使用多层索引,可以将整个数据集控制在二维表结构中,这对于数据重塑和基于分组的操作(如数据透视表的生成)比较有帮助。以test_data二维数据框为例,构造一个多层索引数据集。

    2.5K20

    【Mark一下】46个常用 Pandas 方法速查表

    你可以粗略浏览本文,了解Pandas的常用功能;也可以保存下来,作为以后数据处理工作时的速查手册,没准哪天就会用上呢~ 1创建数据对象 Pandas最常用的数据对象是数据框(DataFrame)和Series...数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...2条数据 6 数据合并和匹配 数据合并和匹配是将多个数据框做合并或匹配操作。...常用高级函数 方法用途示例示例说明map将一个函数或匿名函数应用到Series或数据框的特定列In: print(data2['col3'].map(lambda x:x*2)) Out: 0...2 1 2 2 0 Name: col3, dtype: int64对data2的col3的每个值乘2apply将一个函数或匿名函数应用到Series或数据框In: print(data2

    4.9K20

    pandas合并和连接多个数据框

    当需要对多个数据集合并处理时,我们就需要对多个数据框进行连接操作,在pandas中,提供了以下多种实现方式 1. concat concat函数可以在行和列两个水平上灵活的合并多个数据框,基本用法如下...0.012370 默认情况下,以行的方式合并多个数据框,对于子数据框中没有的列,以NaN进行填充。...合并数据框时,沿着axis参数指定的轴进行合并,而join参数则控制在另外一个轴上,标签如何处理,默认的outer表示取并集,取值为inner时,取交集,只保留overlap的标签,示例如下 >>> pd.concat...在SQL数据库中,每个数据表有一个主键,称之为key, 通过比较主键的内容,将两个数据表进行连接,基本用法如下 >>> a = pd.DataFrame({'name':['Rose', 'Andy',...NaN -1.061909 -0.135067 -0.710007 4. append append将两个数据框以行的方式进行合并,要求列数相同,用法如下 # append 函数,将新的数据框追加为行

    1.9K20

    Python3快速入门(十三)——Pan

    series是一种一维数据结构,每一个元素都带有一个索引,其中索引可以为数字或字符串。Series结构名称: ?...index:索引值必须是唯一的和散列的,与数据的长度相同。 如果没有索引被传递,默认为np.arange(n)。 dtype:数据类型,如果没有,将推断数据类型。...columns:列索引标签,如果没有传递索列引值,默认列索引是np.arange(n)。 dtype:每列的数据类型。 copy:如果默认值为False,则此命令(或任何它)用于复制数据。...当指定columns时,如果columns使用字典键集合以外元素作为columns的元素,则使用NaN进行填充,并提取出columns指定的数据源字典中相应的键值对。...4、DataFrame列操作 通过字典键可以进行列选择,获取DataFrame中的一列数据。

    8.6K10

    Pandas 2.2 中文官方教程和指南(一)

    这些原则中的许多都是为了解决在使用其他语言/科学研究环境时经常遇到的缺点。对于数据科学家来说,处理数据通常分为多个阶段:整理和清理数据,分析/建模,然后将分析结果组织成适合绘图或表格显示的形式。...Elizabeth 58 female 要手动将数据存储在表中,请创建一个DataFrame。...一个DataFrame是一个可以在列中存储不同类型数据(包括字符、整数、浮点值、分类数据等)的二维数据结构。 它类似于电子表格、SQL 表或 R 中的data.frame。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 在使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。

    95810

    pandas中的缺失值处理

    在真实的数据中,往往会存在缺失的数据。...pandas在设计之初,就考虑了这种缺失值的情况,默认情况下,大部分的计算函数都会自动忽略数据集中的缺失值,同时对于缺失值也提供了一些简单的填充和删除函数,常见的几种缺失值操作技巧如下 1....默认的缺失值 当需要人为指定一个缺失值时,默认用None和np.nan来表示,用法如下 >>> import numpy as np >>> import pandas as pd # None被自动识别为...缺失值的删除 通过dropna方法来快速删除NaN值,用法如下 >>> a.dropna() 0 1.0 1 2.0 dtype: float64 # dropna操作数据框时,可以设置axis参数的值...=0) A B 0 1.0 1.0 >>> df.dropna(axis=1) Empty DataFrame Columns: [] Index: [0, 1, 2] pandas中的大部分运算函数在处理时

    2.6K10

    从小白到大师,这里有一份Pandas入门指南

    内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...索引 Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...索引 Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.7K30

    从小白到大师,这里有一份Pandas入门指南

    内存优化 在处理数据之前,了解数据并为数据框的每一列选择合适的类型是很重要的一步。...在内部,Pandas 将数据框存储为不同类型的 numpy 数组(比如一个 float64 矩阵,一个 int32 矩阵)。 有两种可以大幅降低内存消耗的方法。...这种分类类型允许用索引替换重复值,还可以把实际值存在其他位置。教科书中的例子是国家。和多次存储相同的字符串「瑞士」或「波兰」比起来,为什么不简单地用 0 和 1 替换它们,并存储在字典中呢?...索引 Pandas 是强大的,但也需要付出一些代价。当你加载 DataFrame 时,它会创建索引并将数据存储在 numpy 数组中。这是什么意思?...在得到的数据框中,「年龄」列是索引。 除了了解到「X 代」覆盖了三个年龄组外,分解这条链。第一步是对年龄组分组。

    1.8K11

    Pandas 2.2 中文官方教程和指南(二十四)

    使用分块加载 通过将一个大问题分成一堆小问题,一些工作负载可以通过分块来实现。例如,将单个 CSV 文件转换为 Parquet 文件,并为目录中的每个文件重复此操作。...假设我们在磁盘上有一个更大的“逻辑数据集”,它是一个 parquet 文件目录。目录中的每个文件代表整个数据集的不同年份。...使用分块 通过将一个大问题分解为一堆小问题,可以使用分块来实现某些工作负载。例如,将单个 CSV 文件转换为 Parquet 文件,并为目录中的每个文件重复此操作。...作为 NumPy 类型的 NA 表示 由于在 NumPy 和 Python 中普遍缺乏对 NA(缺失)的支持,NA 可以用以下方式表示: 一种 掩码数组 解决方案:一个数据数组和一个布尔值数组,指示值是否存在或缺失...编程中的一个通用规则是,在迭代容器时不应该改变容器。改变会使迭代器失效,导致意外行为。

    41400

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    map()还有一个参数na_action,类似R中的na.action,取值为'None'或'ingore',用于控制遇到缺失值的处理方式,设置为'ingore'时串行运算过程中将忽略Nan值原样返回。...● 多列数据   apply()最特别的地方在于其可以同时处理多列数据,譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中...(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据而不是Series.apply()那样每次处理单个值),注意在处理多个值时要给apply()添加参数axis...三、聚合类方法   有些时候我们需要像SQL里的聚合操作那样将原始数据按照某个或某些离散型的列进行分组再求和、平均数等聚合之后的值,在pandas中分组运算是一件非常优雅的事。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5.1K60
    领券