首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    14个pandas神操作,手把手教你写代码

    在Python语言应用生态中,数据科学领域近年来十分热门。作为数据科学中一个非常基础的库,Pandas受到了广泛关注。Pandas可以将现实中来源多样的数据进行灵活处理和分析。...关于为何有Python这个项目,吉多·范罗苏姆在1996年曾写道:6年前,也就是1989年12月,我在寻找一门“课余”编程项目来打发圣诞节前后的时间。...://pypi.tuna.tsinghua.edu.cn/simple 安装完成后,在终端中启动Jupyter Notebook,给文件命名,如pandas-01。...(2)选择行 选择行的方法如下: # 用指定索引选取 df[df.index == 'Liver'] # 指定姓名 # 用自然索引选择,类似列表的切片 df[0:3] # 取前三行 df[0...:10:2] # 在前10个中每两个取一个 df.iloc[:10,:] # 前10个 (3)指定行和列 同时给定行和列的显示范围: df.loc['Ben', 'Q1':'Q4'] # 只看Ben

    3.4K20

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    Isin 在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。...下述代码实现选择前三行前两列的数据(iloc方式): df.iloc[:3,:2] ?...下述代码实现选择前三行前两列的数据(loc方式): df.loc[:2,['group','year']] ? 注:当使用loc时,包括索引的上界,而使用iloc则不包括索引的上界。...一些dataframe列中包含连续的度量或变量。在某些情况下,将这些列表示为行可能更适合我们的任务。考虑以下情况: ? 我们有三个不同的城市,在不同的日子进行测量。我们决定将这些日子表示为列中的行。...然而,在某些情况下,我们可能无法选择矢量化操作。例如,我们可以使用pandas dataframes的style属性更改dataframe的样式。

    5.7K30

    pandas操作excel全总结

    首先,了解下pandas中两个主要的数据结构,一个是Series,另一个是DataFrame。 Series一种增强的一维数组,类似于列表,由索引(index)和值(values)组成。...DataFrame是一个类似表格的二维数据结构,索引包括列索引和行索引,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series。...print(result) result = pd.read_excel('test1.xlsx',names=['序号','姓名','年龄','城市']) print(result) # 查看指定前几行...,默认前5行,指定行数写小括号里 print(result.head()) # 查看数据的(行数、列数) print(result.shape) #(4, 4) # 查看列索引列表 print(result.columns.values...missing')# 使用字符串填补 df.replace('old', 'new') # old替换成new df.rename(columns={'old_name': 'new_name'}) # 选择性更改列名

    22K44

    「Python」矩阵、向量的循环遍历

    请注意,本文编写于 325 天前,最后修改于 325 天前,其中某些信息可能已经过时。...Out[3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 那么在Pandas操作中,有没有类似的功能可以实现对矩阵或者向量进行操作呢?...apply() 在Pandas中,无论是矩阵(DataFrame)或者是向量(Series)对象都是有apply()方法的。...对DataFrame对象使用该方法的话就是对矩阵中的每一行或者每一列进行遍历操作(通过axis参数来确定是行遍历还是列遍历);对Series对象使用该方法的话,就是对Series中的每一个元素进行循环遍历操作..., dtype='<U4') In [30]: df Out[30]: a b 0 10 20 1 20 30 2 30 40 在函数前加上@np.vectorize语法糖也是同样的效果

    1.4K10

    Pandas速查手册中文版

    (1)官网: Python Data Analysis Library (2)十分钟入门Pandas: 10 Minutes to pandas 在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法...pandas-cheat-sheet.pdf 关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas...df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引 查看、检查数据 df.head(n):查看DataFrame对象的前n...np.mean data.apply(np.max,axis=1):对DataFrame中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat...:返回每一列的最大值 df.min():返回每一列的最小值 df.median():返回每一列的中位数 df.std():返回每一列的标准差

    12.3K92

    Pandas 2.2 中文官方教程和指南(一)

    在电子表格软件中,我们的数据的表格表示看起来会非常相似: DataFrame中的每一列都是一个Series 我只对在Age列中的数据感兴趣 In [4]: df["Age"] Out[4]: 0...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。...DataFrame中的每一列都是一个Series。当选择单列时,返回的对象是一个 pandas Series。...需要在选择括号[]前使用loc/iloc运算符。在使用loc/iloc时,逗号前面的部分是您想要的行,逗号后面的部分是您要选择的列。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 在使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。

    98610

    机器学习基础篇_12

    因为在这中情况下,在计算过程中,如果某一项的值特别大,则对于结果的影响也 会特别大,从而使得各个特征之间达不到同等重要的效果,因此需要归一化到统一级别下进行计算,这样才能达到多个特征同等重要的效果。...API 类:scikit-learn.preprocessing.StandarScaler 处理之后每列来说所有数据都聚集在均值0附近,标准差为1。...StandardScaler.fit_transform(X) X: numpy array 格式的数据[n_samples, n_features] 返回值:转换后的形状相同的array StandardScaler.mean_ 原始数据中每列特征的平均值...StandardScaler.std_ 原始数据每列特征的方差 特征选择 数据降维:维度是指特征的数量。...概念 是单纯地从提取到的所有特征中选择部分特征作为训练集特征,特征在选择前和选择后可以改变值、也不改变值,但是选择后的特征维数肯定比选择前小,毕竟我们值选择了其中的一部分特征。

    93410

    快速介绍Python数据分析库pandas的基础知识和代码示例

    本附注的结构: 导入数据 导出数据 创建测试对象 查看/检查数据 选择查询 数据清理 筛选、排序和分组 统计数据 首先,我们需要导入pandas开始: import pandas as pd 导入数据...我们可以通过df[:10].to_csv()保存前10行。我们还可以使用df.to_excel()保存和写入一个DataFrame到Excel文件或Excel文件中的一个特定表格。...查看/检查数据 head():显示DataFrame中的前n条记录。我经常把一个数据档案的最上面的记录打印在我的jupyter notebook上,这样当我忘记里面的内容时,我可以回头查阅。...选择 在训练机器学习模型时,我们需要将列中的值放入X和y变量中。...mean():返回平均值 median():返回每列的中位数 std():返回数值列的标准偏差。 corr():返回数据格式中的列之间的相关性。 count():返回每列中非空值的数量。

    8.1K20

    Python中Pandas库的相关操作

    1.Series(序列):Series是Pandas库中的一维标记数组,类似于带标签的数组。它可以容纳任何数据类型,并具有标签(索引),用于访问和操作数据。...2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...DataFrame可以从各种数据源中创建,如CSV文件、Excel文件、数据库等。 3.Index(索引):索引是Pandas中用于标识和访问数据的标签。它可以是整数、字符串或其他数据类型。...4.选择和过滤数据:Pandas提供了灵活的方式来选择、过滤和操作数据。可以使用标签、位置、条件等方法来选择特定的行和列。...5.缺失数据处理:Pandas具有处理缺失数据的功能,可以检测、删除或替换数据中的缺失值。 6.数据聚合和分组:Pandas可以通过分组和聚合操作对数据进行统计和汇总。

    31130

    灰太狼的数据世界(三)

    比如说我们现在有这样一张表,那么把这张表做成dataframe,先把每一列都提取出来,然后将这些在列的数据都放到一个大的集合里,在这里我们使用字典。...在DataFrame中增加一列,我们可以直接给值来增加一列,就和python的字典里面添加元素是一样的: import pandas as pd import numpy as np val = np.arange...首先我们可能需要从给定的数据中提取出一些我们想要的数据,而Pandas 提供了一些选择的方法,这些选择的方法可以把数据切片,也可以把数据切块。...下面我们简单介绍一下: 选择一列: data['column_name'] 选择一列的前几行数据: data['columns_name'][:n] 选择多列: data[['column1','column2...关于dataframe中的统计函数,这里就不多说什么了,具体已经在Serires那个章节中列详细出来了。具体可以参考以下方法。

    2.8K30

    pandas入门①数据统计

    本指南直接来自pandas官方网站上的10分钟pandas指南。 我将它改写以使代码更易于访问。 本指南适用于之前未使用pandas的初学者。...查看数值型列的汇总统计 s.value_counts(dropna=False):查看Series对象的唯一值和计数 df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数...two -0.413331 three -2.767427 four -0.763200 Name: 2014-11-04 00:00:00, dtype: float64 通过标签来在多个轴上进行选择...1.0 2013-01-02 数据统计 df.describe():查看数据值列的汇总统计 df.mean():返回所有列的均值 df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数...df.max():返回每一列的最大值 df.min():返回每一列的最小值 df.median():返回每一列的中位数 df.std():返回每一列的标准差

    1.5K20

    7步搞定数据清洗-Python数据清洗指南

    也可以用这两条来看: #1.1查看每一列的数据类型 DataDF.dtypes #1.2有多少行,多少列 DataDF.shape # 2.检查缺失数据 # 如果你要检查每列缺失数据的数量,使用下列代码是最快的方法...2)修改列名:该数据的名称不易于理解,需要改列名 3)选择部分子集:因为有部分列在数据分析中不需要用到 4)可能存在逻辑问题需要筛选:比如Unit Price为负 5)格式一致化:Description...日期调整前(为求简便这里用已经剔除分秒,剔除的办法后面在格式一致化的空格分割再详细说) #数据类型转换:字符串转换为日期 #errors='coerce' 如果原始数据不符合日期的格式,转换后的值为空值...修改后 四、选择部分子集 这是一个8列*541909行的数据集。 ? ? #选择子集,选择其中一列 subDataDF1=DataDF["InvoiceDate"] ?...,'InvoiceDate']=splitSaletime(DataDF.loc[:,'InvoiceDate']) 七、处理缺失值 python缺失值有3种: 1)Python内置的None值 2)在pandas

    4.5K20

    Pandas入门:安装与基本操作

    install pandas导入 Pandas安装完成后,可以在 Python 脚本或 Jupyter Notebook 中导入 Pandas:import pandas as pd基本数据结构Pandas...City0 Alice 25 New York1 Bob 30 Los Angeles2 Charlie 35 Chicago常见操作查看数据查看前几行...print(df.tail(2))输出: Name Age City1 Bob 30 Los Angeles2 Charlie 35 Chicago选择数据选择单列...忘记导入 Pandas在使用 Pandas 之前,必须先导入库。忘记导入会导致代码无法运行。2. 索引错误在访问 Series 或 DataFrame 时,索引错误是一个常见的问题。...数据类型不一致DataFrame 中的每一列可以有不同的数据类型。如果数据类型不一致,可能会导致意外的结果或错误。4. 链式操作链式操作可以提高代码的可读性和简洁性,但也可能导致性能问题。

    55220

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    用点(.)选择 pandas 里的列写起来比较容易,但列名里有空格,就没法这样操作了。...与 read_csv() 函数类似, read_clipboard() 会自动检测列名与每列的数据类型。 ? ? 真不错!pandas 自动把第一列当设置成索引了。 ?...要解决这个问题得用 transform() 方法,这个方法执行同样的计算,但返回与原始数据行数一样的输出结果,本例中为 4622 行。 ?...如上所示,每一行都列出了对应的订单总价。 这样一来,计算每行产品占订单总价的百分比就易如反掌了。 ? 20. 选择行与列 本例使用大家都看腻了的泰坦尼克数据集。 ?...不过,要想为某个 DataFrame 设定指定的样式,pandas 还提供了更灵活的方式。 下面看一下 stocks。 ? 创建样式字符字典,指定每列使用的格式。 ?

    7.2K20
    领券