首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在pandas中,如何按两列分组并对第三个不同的列求和?

在pandas中,可以使用groupby函数按两列进行分组,并使用agg函数对第三个不同的列进行求和。

具体步骤如下:

  1. 导入pandas库:import pandas as pd
  2. 创建一个DataFrame对象,假设为df,包含需要分组和求和的三列数据。
  3. 使用groupby函数按两列进行分组,例如按列A和列B进行分组:grouped = df.groupby(['A', 'B'])
  4. 使用agg函数对第三个不同的列进行求和,例如对列C进行求和:result = grouped['C'].sum()

最终,result将包含按两列分组后,第三个不同的列求和的结果。

以下是一个示例代码:

代码语言:txt
复制
import pandas as pd

# 创建DataFrame对象
data = {'A': ['a', 'a', 'b', 'b', 'a'],
        'B': [1, 2, 1, 2, 1],
        'C': [10, 20, 30, 40, 50]}
df = pd.DataFrame(data)

# 按两列分组并对第三个不同的列求和
grouped = df.groupby(['A', 'B'])
result = grouped['C'].sum()

print(result)

输出结果为:

代码语言:txt
复制
A  B
a  1    60
   2    20
b  1    30
   2    40
Name: C, dtype: int64

在这个例子中,按列A和列B进行分组,并对列C进行求和,得到了按两列分组后,第三个不同的列求和的结果。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

问与答62: 如何按指定个数在Excel中获得一列数据的所有可能组合?

excelperfect Q:数据放置在列A中,我要得到这些数据中任意3个数据的所有可能组合。如下图1所示,列A中存放了5个数据,要得到这5个数据中任意3个数据的所有可能组合,如列B中所示。...如何实现? ? 图1 (注:这是无意在ozgrid.com中看到的一个问题,我觉得程序编写得很巧妙,使用了递归的方法来解决,非常简洁,特将该解答稍作整理后辑录于此与大家分享!)...Dim n AsLong Dim vElements As Variant Dim lRow As Long Dim vResult As Variant '要组合的数据在当前工作表的列...Then lRow = lRow + 1 Range("B" & lRow) = Join(vResult, ", ") '每组组合放置在多列中...代码的图片版如下: ? 如果将代码中注释掉的代码恢复,也就是将组合结果放置在多列中,运行后的结果如下图2所示。 ? 图2

5.6K30
  • Pandas数据聚合:groupby与agg

    引言 在数据分析中,数据聚合是一项非常重要的操作。Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...本文将从基础概念、常见问题、常见报错及解决方案等方面,由浅入深地介绍如何使用Pandas的groupby和agg方法,并通过代码案例进行详细解释。...它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。通过agg,我们可以一次性对多个列应用不同的聚合函数,极大地提高了数据处理的灵活性和效率。...检查拼写是否正确,并确认列确实存在于DataFrame中。 TypeError: 当尝试对非数值类型的数据应用某些聚合函数(如求和)时,可能会遇到类型错误。...无论是简单的单列聚合还是复杂的多列联合聚合,掌握其中的技巧和注意事项都能让我们更加高效准确地处理数据。希望本文能够帮助读者解决在实际工作中遇到的相关问题,并提高工作效率。

    41110

    pandas 如何实现 excel 中的汇总行?

    最近群里小伙伴提出了几个问题,如何用pandas实现execl中的汇总行。 关于这个问题,群里展开了激烈的讨论,最终经过梳理总结出了以下两个解决方法。...解决方法 用法:sum()、pivot_table 如果要对数据按行方向求和,直接使用sum()函数即可,设置参数axis=1(默认是axis=0列方向对列数据求和),然后将横向求和结果赋给一个新的字段...df['total'] = df.sum(axis=1) 此时已得到行方向的求和,如果我们想继续计算列方向求和并显示出来如何操作呢?...对列数据的汇总求和比较取巧,使用groupby实现了对整列数据求和,求和sum函数中需设置numeric_only参数,只对数值求和。得到列汇总结果后将其与原数据进行concat纵向拼接。...如果想要对Team进行分组求和,可以通过transform实现组合求和并添加为一个新的求和列。

    32330

    Pandas从入门到放弃

    这些基本操作都建立在Pandas的基础数据结构之上。Pandas有两大基础数据结构:Series(一维数据结构)和DataFrame(二维数据结构)。...,获取的永远是列,索引只会被认为是列索引,而不是行索引;相反,第二种方式没有此类限制,故在使用中容易出现问题。...() 除了对单一列进行分组,也可以对多个列进行分组。...例如对“level”、“place_of_production”两个列同时进行分组,希望看到每个工厂都生成了哪些类别的物品,每个类别的数字特征的均值和求和是多少 df = file2.groupby([...2)Numpy只能存储相同类型的ndarray,Pandas能处理不同类型的数据,例如二维表格中不同列可以是不同类型的数据,一列为整数一列为字符串。

    9610

    Pandas库

    数据结构 Pandas的核心数据结构有两类: Series:一维标签数组,类似于NumPy的一维数组,但支持通过索引标签的方式获取数据,并具有自动索引功能。...在Pandas库中,Series和DataFrame是两种主要的数据结构,它们各自适用于不同的数据操作任务。我们可以对这两种数据结构的性能进行比较。...如何在Pandas中实现高效的数据清洗和预处理? 在Pandas中实现高效的数据清洗和预处理,可以通过以下步骤和方法来完成: 处理空值: 使用dropna()函数删除含有缺失值的行或列。...数据分组与聚合(Grouping and Aggregation) : 数据分组与聚合是数据分析中常用的技术,可以帮助我们对数据进行分组并计算聚合统计量(如求和、平均值等)。...Pandas的groupby方法可以高效地完成这一任务。 在Pandas中,如何使用聚合函数进行复杂数据分析? 在Pandas中,使用聚合函数进行复杂数据分析是一种常见且有效的方法。

    8410

    用 Pandas 进行数据处理系列 二

    获取指定的列和行 import pandas as pd df = pd.read_csv('xxxx.xls') 获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['...()重设索引df=df.set_index(‘date’)设置 date 为索引df[:‘2013’]提取 2013 之前的所有数据df.iloc[:3,:2]从 0 位置开始,前三行,前两列,这里的数据不同去是索引的标签名称...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...([‘city’,‘size’])[‘id’].count()对两个字段进行分组汇总,然后进行计算df.groupby(‘city’)[‘pr’].agg([len, np.sum,np.mean])对...默认会将分组后将所有分组列放在索引中,但是可以使用 as_index=False 来避免这样。

    8.2K30

    七步搞定一个综合案例,掌握pandas进阶用法!

    如下图所示,①处有3种产品,是【上海-收纳具】销量Top3的产品,其销售数量占比超过50%(或未达50%但已达到Top3,虽然这里后两个产品都是文件夹,但观察原始数据会发现,这是两种不同的文件夹);②处有两件商品...2.分组聚合 按照需求,需要计算每个城市每个子类别下产品的销售总量,因此需要按照city和sub_cate分组,并对amt求和。为计算占比,求得的和还需要和原始数据合在一块作为新的一列。...这里有两种方式,可以先分组求和,再与原数据进行merge,也可以使用分组transform一步到位,在前面的文章Pandas tricks 之 transform的用法一文中有详细的讲解。...6.分组拼接 在上一步筛选出了目标行,未达到最终目标,还需将每个分组内所有符合条件的产品名称拼接起来,并用逗号隔开。这里采用分组对字符串求和的方式来实现。...涉及到的操作依次有:数据读取,列名修改,字段分割,列子集筛选;分组求和(transform);分组排序(编号),分组排序;累计求和;按行迭代,数据拼接,条件筛选,分组拼接,apply/lambda函数;

    2.7K40

    最全面的Pandas的教程!没有之一!

    增加数据列有两种办法:可以从头开始定义一个 pd.Series,再把它放到表中,也可以利用现有的列来产生需要的新列。比如下面两种操作: 定义一个 Series ,并放入 'Year' 列中: ?...分组统计 Pandas 的分组统计功能可以按某一列的内容对数据行进行分组,并对其应用统计函数,比如求和,平均数,中位数,标准差等等… 举例来说,用 .groupby() 方法,我们可以对下面这数据表按...然后,调用 .groupby() 方法,并继续用 .mean() 求平均值: ? 上面的结果中,Sales 列就变成每个公司的分组平均数了。...Pandas 的数据透视表能自动帮你对数据进行分组、切片、筛选、排序、计数、求和或取平均值,并将结果直观地显示出来。比如,这里有个关于动物的统计表: ?...,index 表示按该列进行分组索引,而 columns 则表示最后结果将按该列的数据进行分列。

    26K64

    使用R或者Python编程语言完成Excel的基础操作

    熟悉界面:打开Excel并熟悉其界面,包括菜单栏、工具栏、功能区等。 掌握基本操作:学习如何插入、删除行/列,重命名工作表,以及基本的数据输入。...色阶:根据单元格的值变化显示颜色的深浅。 图标集:在单元格中显示图标,以直观地表示数据的大小。 公式和函数 数组公式:对一系列数据进行复杂的计算。...、类型转换、增加列、分组求和、排序和查看结果。...x: int(x[-2]), reverse=True) 分组求和 分组求和在不使用Pandas的情况下会相对复杂,需要手动实现分组逻辑: # 假设我们要按 'Store' 分组求 'Sales'...在实际工作中,直接使用Pandas进行数据处理是非常常见的做法,因为Pandas提供了对大型数据集进行高效操作的能力,以及丰富的数据分析功能。

    23810

    Pandas图鉴(三):DataFrames

    这个过程如下所示: 索引在Pandas中有很多用途: 它使通过索引列的查询更快; 算术运算、堆叠、连接是按索引排列的;等等。 所有这些都是以更高的内存消耗和更不明显的语法为代价的。...就像1:1的关系一样,要在Pandas中连接一对1:n的相关表,你有两个选择。...如果要merge的列不在索引中,而且你可以丢弃在两个表的索引中的内容,那么就使用merge,例如: merge()默认执行inner join Merge对行顺序的保持不如 Postgres 那样严格...默认情况下,Pandas会对任何可远程求和的东西进行求和,所以必须缩小你的选择范围,如下图: 注意,当对单列求和时,会得到一个Series而不是一个DataFrame。...在分组时,不同的列有时应该被区别对待。例如,对数量求和是完全可以的,但对价格求和则没有意义。

    44420

    python数据分析——数据分类汇总与统计

    1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...关键技术: df.groupby(col1)[col2]或者df[col2].groupby(col1),两者含义相同,返回按列col1进行分组后,col2的值。...首先,编写一个选取指定列具有最大值的行的函数: 现在,如果对smoker分组并用该函数调用apply,就会得到: top函数在DataFrame的各个片段调用,然后结果由pandas.concat...关键技术:假设你需要对不同的分组填充不同的值。可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。...关键技术:在pandas中透视表操作由pivot_table()函数实现,其中在所有参数中,values、index、 columns最为关键,它们分别对应Excel透视表中的值、行、列。

    82410

    pandas 时序统计的高级用法!

    最后一天的午夜 offset:对origin添加的偏移量,Timedelta或str类型 group_keys:指定是否在结果索引包含分组keys,当采样对象使用了.apply()方法,默认False不包含...根据rule参数含义码表,H代表小时的意思,12H也就是12小时。这是resample非常强大的地方,可以把采样定位的非常精确。 下面将天的时间频率转换为12小时的频率,并对新的频率分组后求和。...,如果想去掉层级并自定义结果中的变量名,可通过以下代码实现。...,以下对多个变量进行不同的聚合函数,其中也可以自定义函数。...通过pipe的链式可以像管道一样按顺序依次执行操作,并且只需要一行代码即可,极大地提高了可读性。 以下对下采样后的C_0和C_1变量进行累加求和操作,然后再对两个求和作差。

    44840

    Python数学建模算法与应用 - 常用Python命令及程序注解

    由于NumPy数组是按列存储的,因此对二维数组使用sum()函数将对每一列进行求和。结果赋值给变量c1。...逐列求和,并保留维度: c3 = np.sum(a, axis=0, keepdims=True) 这行代码使用了NumPy库的sum()函数,并通过axis=0参数指定按列求和。...s2 = d.groupby('A').apply(sum) 这行代码根据 'A' 列的值对 DataFrame d 进行分组,并对每个分组应用 sum 函数进行求和。...groupby 是 pandas 中的一个函数,用于根据一个或多个列的值对 DataFrame 进行分组操作。它可以用于数据聚合、统计和分析。...它决定了按照哪些列的值进行分组。 axis:指定分组的轴向,0 表示按行进行分组,1 表示按列进行分组。 level:如果 DataFrame 是多层索引的,则可以指定级别进行分组。

    1.5K30

    数据城堡参赛代码实战篇(一)---手把手教你使用pandas

    在上一篇文章中,小编带大家回顾了参赛的心路历程,虽然看上去生动有趣,十分轻松,但是小编们在背后也是付出了不少的汗水呀。本篇,小编文文将带你一起分析如何用pandas来对官方给出的数据进行处理和分析。...1 引言 在进入正题之前呢,我们先来了解两件事情:pandas和官方数据。 1.1Pandas 首先,什么是pandas,相信很多数据挖掘爱好者对此已经非常熟悉,那么你可以直接跳过此处。...在代码中使用pandas,首先需要导入: import pandas as pd 它主要的数据结构有如下两种:Series Series类似于一维数组对象,它由一组数据以及一组与之相关的数据标签组成,简单的...这里,小编想通过pandas介绍一下我们是如何对数据进行处理,得到我们想要的特征的。...没错,pandas也提供了数据透视表的功能,相对于使用groupby来说,数据透视表更加的便捷快速,代码如下: #第一个参数指定我们需要计算的列,第二个参数指定行标签,第三个参数代表列标签, #aggfunc

    1.3K40

    python数据科学系列:pandas入门详细教程

    ,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持...count、value_counts,前者既适用于series也适用于dataframe,用于按列统计个数,实现忽略空值后的计数;而value_counts则仅适用于series,执行分组统计,并默认按频数高低执行降序排列...一般而言,分组的目的是为了后续的聚合统计,所有groupby函数一般不单独使用,而需要级联其他聚合函数共同完成特定需求,例如分组求和、分组求均值等。 ?

    15K20

    Pandas_Study02

    pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...# axis 按行操作,how 原理同上 # 同时可以添加条件删除 print(df.dropna(axis = 1, thresh = 2)) # axis=1按列操作,thresh 指示这一列或行中有两个或以上的非...columns=col) # 按行操作,对数据求和 print(type(df.apply(lambda col: col.sum(), axis='rows'))) # 按列操作,对数据求和 print...实际上就是对两个df 求交集还是并集的选择 # 外连接就是并集,内连接就是交集 3. merge() 方法 merge函数可以真正实现数据库的内外连接,且外连接还可以有左右连接的特性。...补充: 内连接,对两张有关联的表进行内连接操作,结果表会是两张表的交集,例如A表和B表,如果是A 内连接(inner join)B表,结果表是以A为基准,在B中找寻A匹配的行,不匹配则舍弃,B内连接A同理

    20510
    领券