首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在pandas数据框中添加列表作为第二列时,如何保持一列不变?

在pandas数据框中添加列表作为第二列时,可以使用insert()方法来实现,并且保持一列不变。具体步骤如下:

  1. 首先,将要添加的列表转换为pandas的Series对象。
  2. 然后,使用insert()方法将Series对象插入到数据框中指定的位置。
  3. 最后,可以选择删除原始的第二列,以保持一列不变。

以下是示例代码:

代码语言:txt
复制
import pandas as pd

# 原始数据框
df = pd.DataFrame({'A': [1, 2, 3], 'C': [4, 5, 6]})

# 要添加的列表
new_list = [7, 8, 9]

# 将列表转换为Series对象
new_series = pd.Series(new_list)

# 使用insert()方法将Series对象插入到数据框中指定的位置
df.insert(1, 'B', new_series)

# 删除原始的第二列
df.drop(columns=['C'], inplace=True)

# 打印结果
print(df)

这样,就可以在pandas数据框中添加列表作为第二列,并保持一列不变。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

DataFrames相关介绍&&文件读取

而Pandas的另一种数据类型:DataFrame,在许多特性上和Series有相似之处。...(2)顾名思义,这个就是一个数据框,用来存储这个二维数组的相关的信息,通过行和列可以找到对应的位置的元素,这个是pandas模块里面经常使用的一种数据结构,下面的就是一个基本的数据框; 显然,这个框有三个部分组成...,但是在构造函数的参数里面,我们指明了这个列索引,我们上面的那个传递进来的就是键值对的字典,现在传进来的就是一个嵌套的列表 # 导入pandas模块,简称pd import pandas as pd...,文本等表格数据,他的每一列的内容数据的类型是一样的; 读取这个CSV文件使用的函数就是对应的pd.read_csv()函数,这个函数需要我们传递的参数就是我们想要处理的文件的路径,windows操作系统下面需要在这个路径前面添加...,这个时候我们就可以添加这个columns,例如我们下面的这个案例里面添加的就是订单号,用户id,支付金额等等,这些信息可以让用户们清楚的知道某一列的数据的实际意义; # 导入pandas模块,并以"pd

6500

没错,这篇文章教你妙用Pandas轻松处理大规模数据

在这篇文章中,我们将介绍 Pandas 的内存使用情况,以及如何通过为数据框(dataframe)中的列(column)选择适当的数据类型,将数据框的内存占用量减少近 90%。...最原始的数据是 127 个独立的 CSV 文件,不过我们已经使用 csvkit 合并了这些文件,并且在第一行中为每一列添加了名字。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...你可以看到,存储在 Pandas 中的字符串的大小与作为 Python 中单独字符串的大小相同。 使用分类来优化对象类型 Pandas 在 0.15版引入了 Categoricals (分类)。...回到我们的类型表,里面有一个日期(datetime)类型可以用来表示数据集的第一列。 你可能记得这一列之前是作为整数型读取的,而且已经被优化为 uint32。

3.7K40
  • python量化学习路线(第一章python相关语法)

    代码注释如下: # 将列表中的偶数移到末尾并保持奇数顺序不变 def move_even_numbers(nums): # 列表推导式,筛选出所有的奇数 odd_nums = [n for...其中奇数部分的顺序不变,偶数组分会附在末尾,且偶数部分保持了原有顺序。 第二个测试输入列表为[2, 4, 6, 1, 3, 5],输出结果为[1, 3, 5, 2, 4, 6],同上述分析。...对于支持加、减、乘、除4种运算操作,在满足条件时执行对应运算,并将结果存储在变量result中。最终使用print()函数将结果输出到控制台。...使用pandas库读取并处理.csv文件,统计其中每一列的平均值、中位数和标准差。...库读取CSV文件中的数据,并以列作为操作对象进行标准化处理。

    5910

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...要使更改“保持不变”,您需要分配给一个新变量。 sorted_df = df.sort_values("col1") 或覆盖原来的。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...按值排序 Excel电子表格中的排序,是通过排序对话框完成的。 pandas 有一个 DataFrame.sort_values() 方法,它需要一个列列表来排序。

    19.6K20

    筛选功能(Pandas读书笔记9)

    今天和大家分享如果使用Pandas实现单、多条件筛选、模糊筛选。 还是老套路,我们需要先读取一组数据作为测试文件。...这里两个数字都是闭合的,案例中[7:11]则选取的是第8行至第12行(pandas从0开始编号) 二、提取任意列 1、按照列名提取单列 ? 2、按照列名提取多列 ?...df['涨跌额']是选出涨跌额这一列 我们看到使用判断后返回的是一个布尔型的数据,是一个TRUE和FALSE的集合体。 那我们如何将这个布尔型的数据实现筛选的功能呢? ?...我们将这个布尔型数据作为一个参数,外面套上原始数据和中括号即可!就实现了筛选功能。 原理就是布尔型数据为真的话,罗列出来!...)将原始数据强制转化为浮点型数据,除以100,让原始数据保持不变;最后使用赋值将更改后的数据重新赋值给涨跌幅那一列。

    5.9K61

    使用pandas进行数据快捷加载

    默认情况下,pandas会将数据存储到一个专门的数据结构中,这个数据结构能够实现按行索引、通过自定义的分隔符分隔变量、推断每一列的正确数据类型、转换数据(如果需要的话),以及解析日期、缺失值和出错数据。...如果想要输出不同的行数,调用函数时只需要设置想要的行数作为参数,格式如下: iris.head(2) 上述命令只输出了数据的前两行。...以下是X数据集的后4行数据: ? 在这个例子中,得到的结果是一个pandas数据框。为什么使用相同的函数却有如此大的差异呢?...那么,在前一个例子中,我们想要抽取一列,因此,结果是一维向量(即pandas series)。 在第二个例子中,我们要抽取多列,于是得到了类似矩阵的结果(我们知道矩阵可以映射为pandas的数据框)。...为了获得数据集的维数,只需在pandas数据框和series上使用属性shape,如下面的例子所示: print (X.shape) #输出:(150,2) print (y.shape) #输出:(150

    2.1K21

    30 个小例子帮你快速掌握Pandas

    我们删除了4列,因此列数从14减少到10。 2.读取时选择特定的列 我们只打算读取csv文件中的某些列。读取时,列列表将传递给usecols参数。如果您事先知道列名,则比以后删除更好。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。...23.分类数据类型 默认情况下,分类数据与对象数据类型一起存储。但是,这可能会导致不必要的内存使用,尤其是当分类变量的基数较低时。 低基数意味着与行数相比,一列具有很少的唯一值。...在计算元素的时间序列或顺序数组中的变化百分比时很有用。 ? 从第一元素(4)到第二元素(5)的变化为%25,因此第二个值为0.25。

    10.8K10

    (数据科学学习手札06)Python在数据框操作上的总结(初级篇)

    数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作。...Python 本文涉及Python数据框,为了更好的视觉效果,使用jupyter notebook作为演示的编辑器;Python中的数据框相关功能集成在数据分析相关包pandas中,下面对一些常用的关于数据框的知识进行说明...True时,以左侧数据框的行标签作为联结键 right_index:为True时,以右侧数据框的行标签作为联结键 sort:为True时,在合并之后以联结键为排序依据进行排序 suffixes:一个元组...7.数据框的条件筛选 在日常数据分析的工作中,经常会遇到要抽取具有某些限定条件的样本来进行分析,在SQL中我们可以使用Select语句来选择,而在pandas中,也有几种相类似的方法: 方法1: A =...11.数据框的排序 df.sort_values()方法对数据框进行排序: 参数介绍: by:为接下来的排序指定一列数据作为排序依据,即其他列随着这列的排序而被动的移动 df#原数据框 ?

    14.3K51

    pandas入门3-2:识别异常值以及lambda 函数

    续上篇文章《pandas入门3-1:识别异常值以及lambda 函数》 假设每个月的客户数量保持相对稳定,将从数据集中删除该月中特定范围之外的任何数据。最终结果应该是没有尖峰的平滑图形。...原因是transform将使dataframe的形状(行数和列数)保持不变,而apply则不会。通过查看前面的图表,可以发现它们不像高斯分布,这意味着不能使用像mean和stDev这样的汇总统计。...原始数据(df)每天有多个记录。我们留下了一个由State和StatusDate索引的数据集。Outlier列中的False表示该记录不是异常值。...,在2009年1月份,最大客户数为901.如果我们使用了apply,我们将得到一个数据框(年份和月份)作为索引,只有Max列值为901。...请记住,当选择axis = 0时,会逐行添加。

    98310

    (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    pdpipe作为专门针对pandas进行流水线化改造的模块,为熟悉pandas的数据分析人员书写优雅易读的代码提供一种简洁的思路,本文就将针对pdpipe的用法进行介绍。...2.2.1 basic_stages basic_stages中包含了对数据框中的行、列进行丢弃/保留、重命名以及重编码的若干类: ColDrop:   这个类用于对指定单个或多个列进行丢弃...图7 DropNa:   这个类用于丢弃数据中空值元素,其主要参数与pandas中的dropna()保持一致,核心参数如下: axis:0或1,0表示删除含有缺失值的行,1表示删除含有缺失值的列...图10 FreqDrop:   这个类用于删除在指定的一列数据中出现频次小于所给阈值对应的全部行,主要参数如下: threshold:int型,传入频次阈值,低于这个阈值的行将会被删除 column...  这是我们在2.1中举例说明使用到的创建pipeline的方法,直接传入由按顺序的pipeline组件组成的列表便可生成所需pipeline,而除了直接将其视为函数直接传入原始数据和一些辅助参数(如

    1.4K10

    案例 | 用pdpipe搭建pandas数据分析流水线

    pdpipe作为专门针对pandas进行流水线化改造的模块,为熟悉pandas的数据分析人员书写优雅易读的代码提供一种简洁的思路,本文就将针对pdpipe的用法进行介绍。...列 5、丢掉genres_num小于等于5的行 上述操作直接使用pandas并不会花多少时间,但是想要不创造任何中间临时结果一步到位产生所需的数据框子集,并且保持代码的可读性不是一件太容易的事,但是利用...': 3}).apply(data).head(3) 结果如图7: 图7 DropNa:   这个类用于丢弃数据中空值元素,其主要参数与pandas中的dropna()保持一致,核心参数如下: axis...# 删除含有缺失值的列 pdp.DropNa(axis=1).apply(df) 结果如图10: 图10 FreqDrop:   这个类用于删除在指定的一列数据中出现频次小于所给阈值对应的全部行,...,因此只能形成一列返回值),默认为'new_col' follow_column:str型,控制结果列插入到指定列名之后,默认为None,即放到最后一列 func_desc:str型,可选参数,为你的函数添加说明文字

    82410

    Pandas图鉴(三):DataFrames

    如果你 "即时" 添加流媒体数据,则你最好的选择是使用字典或列表,因为 Python 在列表的末尾透明地预分配了空间,所以追加的速度很快。...所有的算术运算都是根据行和列的标签来排列的: 在DataFrames和Series的混合操作中,Series的行为(和广播)就像一个行-向量,并相应地被对齐: 可能是为了与列表和一维NumPy向量保持一致...从这个简化的案例中你可以看到(见上面的 "full outer join 全外链"),与关系型数据库相比,Pandas在保持行的顺序方面是相当灵活的。...同时保持了左边DataFrame的索引值和行的顺序不变。...首先,你可以只用一个名字来指定要分组的列,如下图所示: 如果没有as_index=False,Pandas会把进行分组的那一列作为索引列。

    44420

    干货!直观地解释和可视化每个复杂的DataFrame操作

    操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...当一列爆炸时,其中的所有列表将作为新行列在同一索引下(为防止发生这种情况, 此后只需调用 .reset_index()即可)。...作为另一个示例,当级别设置为0(第一个索引级别)时,其中的值将成为列,而随后的索引级别(第二个索引级别)将成为转换后的DataFrame的索引。 ?...合并不是pandas的功能,而是附加到DataFrame。始终假定合并所在的DataFrame是“左表”,在函数中作为参数调用的DataFrame是“右表”,并带有相应的键。...为了防止这种情况,请添加一个附加参数join ='inner',该参数 只会串联两个DataFrame共有的列。 ? 切记:在列表和字符串中,可以串联其他项。

    13.3K20

    Python3分析CSV数据

    ,提供iloc函数根据行索引选取一个单独行作为列索引,提供reindex函数为数据框重新生成索引。...最后,对于第三个值,使用内置的len 函数计算出列表变量header 中的值的数量,这个列表变量中包含了每个输入文件的列标题列表。我们使用这个值作为每个输入文件中的列数。...基本过程就是将每个输入文件读取到pandas数据框中,将所有数据框追加到一个数据框列表,然后使用concat 函数将所有数据框连接成一个数据框。...如果你需要平行连接数据,那么就在concat 函数中设置axis=1。除了数据框,pandas 中还有一个数据容器,称为序列。你可以使用同样的语法去连接序列,只是要将连接的对象由数据框改为序列。...下面的代码演示了如何对于多个文件中的某一列计算这两个统计量(总计和均值),并将每个输入文件的计算结果写入输出文件。 #!

    6.7K10

    python科学计算之Pandas使用(二)

    (有人把 DataFrame 翻译为“数据框”,是不是还可以称之为“筐”呢?向里面装数据嘛。) ?...在字典中就规定好数列名称(第一层键)和每横行索引(第二层字典键)以及对应的数据(第二层字典值),也就是在字典中规定好了每个数据格子中的数据,没有规定的都是空。 ?...一直耿耿于怀没有数值的那一列,下面的操作是统一给那一列赋值: ?...将 Series 对象(sdebt 变量所引用) 赋给 f3['debt']列,Pandas 的一个重要特性——自动对齐——在这里起做用了,在 Series 中,只有两个索引("a","c"),它们将和...自动对齐之后,没有被复制的依然保持 NaN。 还可以更精准的修改数据吗?当然可以,完全仿照字典的操作: ? 这些操作是不是都不陌生呀,这就是 Pandas 中的两种数据对象。

    1K10

    图解pandas的assign函数

    在我们处理数据的时候,有时需要根据某个列进行计算得到一个新列,以便后续使用,相当于是根据已知列得到新的列,这个时候assign函数非常方便。下面通过实例来说明函数的的用法。...Pandas文章 本文是Pandas文章连载系列的第21篇,主要分为3类: 基础部分:1-16篇,主要是介绍Pandas中基础和常用操作,比如数据创建、检索查询、排名排序、缺失值/重复值处理等常见的数据处理操作...: 方式1:直接调用数据框 # 方式1:数据框df上调用 # 使用数据框df的col1属性,生成col3 df.assign(col3=lambda x: x.col1 / 2 + 20)...+中,我们可以在同一个赋值中创建多个列,并且其中一个列还可以依赖于同一个赋值中定义的另一列,也就是中间生成的新列可以直接使用: df.assign( col5=lambda x: x["col1...assign和apply的主要区别在于:前者不改变原数据,apply函数是在原数据的基础上添加新列

    43220

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...譬如这里我们编写一个使用到多列数据的函数用于拼成对于每一行描述性的话,并在apply()用lambda函数传递多个值进编写好的函数中(当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据...输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5K10

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    输入多列数据 apply()最特别的地方在于其可以同时处理多列数据,我们先来了解一下如何处理多列数据输入单列数据输出的情况。...有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法。...,第二个元素是分组出的子集数据框,而对于DataFrame.groupby()得到的结果。...,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字: data.groupby(['year','

    5.8K31

    Pandas速查卡-Python数据科学

    刚开始学习pandas时要记住所有常用的函数和方法显然是有困难的,所以在Dataquest(https://www.dataquest.io/)我们主张查找pandas参考资料(http://pandas.pydata.org...格式的字符串, URL或文件. pd.read_html(url) 解析html URL,字符串或文件,并将表提取到数据框列表 pd.read_clipboard() 获取剪贴板的内容并将其传递给read_table...col] 返回一维数组col的列 df[[col1, col2]] 作为新的数据框返回列 s.iloc[0] 按位置选择 s.loc['index_one'] 按索引选择 df.iloc[0,:] 第一行...加入/合并 df1.append(df2) 将df1中的行添加到df2的末尾(列数应该相同) df.concat([df1, df2],axis=1) 将df1中的列添加到df2的末尾(行数应该相同...df.describe() 数值列的汇总统计信息 df.mean() 返回所有列的平均值 df.corr() 查找数据框中的列之间的相关性 df.count() 计算每个数据框的列中的非空值的数量 df.max

    9.2K80

    如果 .apply() 太慢怎么办?

    如果你在Python中处理数据,Pandas必然是你最常使用的库之一,因为它具有方便和强大的数据处理功能。...如果我们想要将相同的函数应用于Pandas数据帧中整个列的值,我们可以简单地使用 .apply()。Pandas数据帧和Pandas系列(数据帧中的一列)都可以与 .apply() 一起使用。...但是,你是否注意到当我们有一个超大数据集时,.apply() 可能会非常慢? 在本文中,我们将讨论一些加速数据操作的技巧,当你想要将某个函数应用于列时。...因此,要点是,在简单地使用 .apply() 函数处理所有内容之前,首先尝试为您的任务找到相应的 NumPy 函数。 将函数应用于多列 有时我们需要使用数据中的多列作为函数的输入。...例如,我们想要创建一列列表来记录“radius_or_3”和“diameter”之间可能的大小。

    29710
    领券