首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在python 3中,比较2个不同csv文件的不同行,并创建新的csv

在Python 3中,可以使用以下步骤来比较两个不同的CSV文件的不同行,并创建一个新的CSV文件:

  1. 导入所需的模块:
代码语言:txt
复制
import csv
  1. 定义一个函数来比较两个CSV文件的不同行:
代码语言:txt
复制
def compare_csv(file1, file2, output_file):
    with open(file1, 'r') as f1, open(file2, 'r') as f2, open(output_file, 'w', newline='') as output:
        csv1 = csv.reader(f1)
        csv2 = csv.reader(f2)
        writer = csv.writer(output)
        
        # 读取文件1的每一行
        for row1 in csv1:
            # 读取文件2的每一行
            for row2 in csv2:
                # 比较两行是否相同
                if row1 == row2:
                    break
            else:
                # 如果文件2中没有找到相同的行,则将文件1的行写入新的CSV文件
                writer.writerow(row1)
            # 重置文件2的指针,以便下一次比较
            f2.seek(0)
  1. 调用函数并传入两个CSV文件的路径以及输出文件的路径:
代码语言:txt
复制
compare_csv('file1.csv', 'file2.csv', 'output.csv')

这个函数将比较文件1和文件2的每一行,如果在文件2中找不到相同的行,则将文件1的行写入新的CSV文件。你可以根据实际情况修改文件路径和文件名。

这是一个简单的比较CSV文件的方法,适用于小型文件。如果文件较大或需要更高效的比较方法,可以考虑使用pandas库或其他专门用于数据处理的库。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python 自动化指南(繁琐工作自动化)第二版:十六、使用 CSV 文件和 JSON 数据

您可以从下载example.csv或者在文本编辑器中输入文本并保存为example.csv。 CSV 文件很简单,缺少 Excel 电子表格的许多功能。...在高层次上,程序必须做到以下几点: 在当前工作目录中查找所有 CSV 文件。 读入每个文件的全部内容。 跳过第一行,将内容写入一个新的 CSV 文件。...创建一个 CSV reader对象并读入文件的内容,使用line_num属性来决定跳过哪一行。 创建一个 CSV writer对象并将读入的数据写出到新文件中。...然后,添加一些关于程序其余部分应该做什么的TODO注释。 第二步:读入 CSV 文件 程序不会删除 CSV 文件的第一行。相反,它创建一个没有第一行的 CSV 文件的新副本。...您可以编写程序来完成以下任务: 比较一个 CSV 文件中不同行之间或多个 CSV 文件之间的数据。 将特定数据从 CSV 文件复制到 Excel 文件,反之亦然。

11.6K40

测试驱动开发 Nginx 配置

客户希望采用新的统一产品,并根据不同地区的业务特色进行一些定制,与此同时,需要进行数据迁移以保证业务可以继续运行。...后来,我们采用了一个 Excel 文件来跟踪这些 URL,产品经理只需要把新的重定向 URL 补充到上面,我们就依据这些 URL 来开发 nginx 的重定向规则。...Python 的语言环境比较稳定,几乎每种 Linux 都包含 Python 的运行环境,且容易安装和集成。...你也可以通过增加 -n 来指定线程的数量,默认线程数量等于 CSV 文件记录行数。如果文件过大,请限制线程数量,否则线程创建开销会影响测试机性能。此外,过多的并发访问也会发起应用的流量保护机制。...作为冒烟/回归测试集成在持续部署流水线里 Vivan 是用 Python 编写的,这意味着你可以在自己的 CI 服务器上(大多是 Linux)很容易的安装 vivian,在部署完成后用 vivian 执行代码中的测试用例

85010
  • 更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...本文将对pandas支持的多种格式数据在处理数据的不同方面进行比较,包含I/O速度、内存消耗、磁盘占用空间等指标,试图找出如何为我们的数据找到一个合适的格式的办法!...CSV:最常用的数据格式 Pickle:用于序列化和反序列化Python对象结构 MessagePack:类似于json,但是更小更块 HDF5:一种常见的跨平台数据储存文件 Feather:一个快速、...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。...它显示出很高的I/O速度,不占用磁盘上过多的内存,并且在装回RAM时不需要任何拆包。 当然这种比较并不意味着我们应该在每种情况下都使用这种格式。例如,不希望将feather格式用作长期文件存储。

    2.9K21

    更高效的利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...本文将对pandas支持的多种格式数据在处理数据的不同方面进行比较,包含I/O速度、内存消耗、磁盘占用空间等指标,试图找出如何为我们的数据找到一个合适的格式的办法!...CSV:最常用的数据格式 Pickle:用于序列化和反序列化Python对象结构 MessagePack:类似于json,但是更小更块 HDF5:一种常见的跨平台数据储存文件 Feather:一个快速、...因为只要在磁盘上占用一点空间,就需要额外的资源才能将数据解压缩回数据帧。即使文件在持久性存储磁盘上需要适度的容量,也可能无法将其加载到内存中。 最后我们看下不同格式的文件大小比较。...它显示出很高的I/O速度,不占用磁盘上过多的内存,并且在装回RAM时不需要任何拆包。 当然这种比较并不意味着我们应该在每种情况下都使用这种格式。例如,不希望将feather格式用作长期文件存储。

    2.4K30

    这个插件竟打通了Python和Excel,还能自动生成代码!

    它可以帮助对数据类型进行必要的更改、创建新特征、对数据进行排序以及从现有特征中创建新特征。...接下来在终端中运行这些命令,完成安装即可。 1. 创建环境 我正在使用 Conda 创建一个新环境。你还可以使用 Python 的“venv”来创建虚拟环境。...要使用 Mito 创建这样的表, 单击“Pivot”并选择源数据集(默认加载 CSV) 选择数据透视表的行、列和值列。还可以为值列选择聚合函数。...通常,数据集被划分到不同的表格中,以增加信息的可访问性和可读性。合并 Mitosheets 很容易。 单击“Merge”并选择数据源。 需要指定要对其进行合并的键。...这在 Excel 中采用宏或 VBA 的形式。也可以通过这些功能完成相同的操作。 文件是以Python编写的,而不是用比较难懂的VBA。

    4.7K10

    Python学习笔记:输入与输出

    因此,除非文件比较小,否则应避免使用read方法。 open对象的readline方法与read方法类似,但是它只返回直到下一个新行字符的字符串。...Python csv模块 到目前为止,我们已经从文件中读取每行作为自己的字符串,但是如何访问这些行中的信息呢?一种方法是使用with open方法读取数据,并使用split方法分离数据。...””,以防止在程序使用换行符的不同变体的情况下可能会添加额外的换行符。...同样,在使用csv函数时,需要在open语句中添加选项newline = ””,以防止在程序使用换行符的不同变体的情况下可能会添加额外的换行符。...下面的代码从sample.csv中读取数据,然后将数据写入新的文件sample2.csv: ? 图15 示例 下面的代码计算每名学生的总分,并更新文件: ? 图16

    2.2K10

    python读取txt中的一列称为_python读取txt文件并取其某一列数据的示例

    python读取txt文件并取其某一列数据的示例 菜鸟笔记 首先读取的txt文件如下: AAAAF110 0003E818 0003E1FC 0003E770 0003FFFC 90 AAAAF110...首先,观察数据可知,不同行的第一个数据元素不一样,所以考虑直接用正则表达式....然后我想读取这个文件了,我首先将上面的这个文件保存在我即将要创建的Python的文件目录下, 即读取文件成功....关键字with在不再需要访问文件后将其关闭 要让python打开不与程序文件位于同一目录中的文件,需要提供文件的路径,它让python到系统指定的位置去查找....,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近自学Python的进度比较慢,工作之余断断续续的看着效率比较低,看来还是要狠下心来每天进步一点点.

    5.2K20

    两步法搞定:Python中的h5ad文件 转为R中的seurat对象

    转换失败的原因 版本不兼容:Seurat或AnnData的不同版本可能会引入新的功能或更改数据存储方式,导致转换工具无法正确处理最新或旧版格式的文件。...丢失的元数据:转换工具可能期望在源文件中存在特定的元数据信息。如果这些信息缺失或格式不正确,转换过程可能会失败。...不支持的数据类型:某些特定的数据类型或结构可能在一个框架中有良好的支持,而在另一个框架中则不是。例如,Seurat和AnnData在处理稀疏矩阵或复杂的细胞分群信息时可能会有所不同。...通用的解决方案 不管是在r中还是python中 ,只是数据的存储结构不同而已。但是数据本身没有变化。...pwd 第二步,在R中读取导出的数据,并创建seurat对象 cellinfo=read.csv("/home/data/t040413/heart_muscle/item1_NF_DCM_HCM/fibroblast

    1.9K10

    比Open更适合读取文件的Python内置模块

    在Python语言中,负责文件操作的称为文件对象,文件对象不仅可以访问存储在磁盘中的文件,也可以访问网络文件。文件对象通过open函数得到,获取文件对象后,就可以使用文件对象提供的方法来读写文件。...相对内置的open()来说,这个方法比较不容易在编码上出现问题,并且在速度不变的同时,还兼容open()函数所有操作命令。 应用实例 将未知编码方式的csv文件转为utf-8格式文件。...很多程序在处理数据时都会碰到csv这种格式的文件。 python内置了csv模块。...它与返回的记录数不同,因为记录可能跨越多行。 csvreader.fieldnames 字段名称。如果在创建对象时未传入字段名称,则首次访问时或从文件中读取第一条记录时会初始化此属性。...() 在 writer 的文件对象中,写入一行字段名称(字段名称在构造函数中指定),并根据当前设置的变种进行格式化。

    4.7K20

    Python可视化分析笔记(数据源准备和简单可视化)

    可视化是数据分析的重要一环,也是python比较擅长的工作,本笔记系列尽可能采用统一的数据源和基于matplotlib原生版本进行可视化。...本笔记是基于pandas进行数据读取的,因此也简单的总结了一下pandas的一些常规操作,比如文件读取、数据显示、数据分布、数据列名的展示,数据的分组和统计,数据的排序,行列数据的汇总,以及行列的转换。...,并输出其前五行,各列数据分布、各列名 ''' df=pd.read_csv('GDP.csv', encoding = "gbk") print(df.head()) print(df.describe...()) print(list(df.columns.values)) ''' #打开人口数据文件,并输出其前五行,各列数据分布、各列名 df=pd.read_csv('population.csv',...---------------------- #新增一列汇总列,对同行数据进行汇总 #由于前两列是非数字列,所以要从第三列开始统计2017年~2000年的数字 #df['total'] = df.apply

    87020

    Python一条龙:创建、读取、更新、搜索Excel文件

    它们的限制是每个文件只允许一个工作表。 写入CSV文件 首先,打开一个新的Python文件并导入Python CSV模块。 CSV模块 CSV模块包含所有内置的必要方法。...它们允许你编辑,修改和操作存储在CSV文件中的数据。 在第一步中,我们需要定义文件的名称并将其保存为变量。我们应该对题和数据信息做同样的处理。...我们创建了第一个名为imdb_top_4.csv的CSV文件。...使用你首选的电子表格应用程序打开此文件,会看到如下内容: 如果你选择在其他应用程序中打开文件,结果可能是这的: 更新CSV文件 如果要更新这个文件,你应该创建一个名为updater的新函数,它只接受一个名为...的新参数: 从现在开始,我们希望收到writer函数的两个不同选项(写入和更新)。

    2K20

    Python处理CSV文件(一)

    幸好,Python 在识别不同数据类型方面相当聪明。使用 CSV 文件的另一个问题是它只能保存数据,不能保存公式。...但是,通过将数据存储(CSV 文件)和数据处理(Python 脚本)分离,你可以很容易地在不同数据集上进行加工处理。.../usr/bin/env python3 import sys 第 1 行是注释行,可以使脚本在不同的操作系统之间具有可移植性。...要运行这个脚本,在命令行中输入以下命令,命令在不同的操作系统中会有些差别。...假设输入文件和 Python 脚本都保存在你的桌面上,你也没有在命令行或终端行窗口中改变目录,在命令行中输入以下命令,然后按回车键运行脚本(如果你使用 Mac,需要对新的脚本先运行 chmod 命令,使它成为可执行的

    17.8K10

    Python 文件处理

    1. csv文件处理 记录中的字段通常由逗号分隔,但其他分隔符也是比较常见的,例如制表符(制表符分隔值,TSV)、冒号、分号和竖直条等。...建议在自己创建的文件中坚持使用逗号作为分隔符,同时保证编写的处理程序能正确处理使用其他分隔符的CSV文件。 备注: 有时看起来像分隔符的字符并不是分隔符。...Python的csv模块提供了一个CSV读取器和一个CSV写入器。两个对象的第一个参数都是已打开的文本文件句柄(在下面的示例中,使用newline=’’选项打开文件,从而避免删除行的操作)。...='"') CSV文件的第一条记录通常包含列标题,可能与文件的其余部分有所不同。...Python对象 备注: 把多个对象存储在一个JSON文件中是一种错误的做法,但如果已有的文件包含多个对象,则可将其以文本的方式读入,进而将文本转换为对象数组(在文本中各个对象之间添加方括号和逗号分隔符

    7.1K30

    Python按需提取JSON文件数据并保存为Excel表格

    本文介绍基于Python语言,读取JSON格式的数据,提取其中的指定内容,并将提取到的数据保存到.csv格式或.xlsx格式的表格文件中的方法。...我们现在希望实现的是,将上述JSON数据中的文字部分(也就是有价值的信息部分)提取出来,并保存在一个Excel表格文件中;其中,不同的列就是不同的信息属性,不同的行就是不同的样本。   ...这里需要注意,在本文代码中需要用到Python的json库,关于这一个库的配置,大家可以参考文章Mac电脑Anaconda配置Python中json模块。   ...随后,csvwriter = csv.writer(csvfile)表示创建一个.csv写入器,将数据写入csvfile文件。   ...接下来,创建一个新的Excel工作簿,将其赋值给变量wb;随后,获取工作簿的活动工作表,并将其赋值给变量ws。

    1.7K10

    别说你会用Pandas

    说到Python处理大数据集,可能会第一时间想到Numpy或者Pandas。 这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。...chunk 写入不同的文件,或者对 chunk 进行某种计算并保存结果 但使用分块读取时也要注意,不要在循环内部进行大量计算或内存密集型的操作,否则可能会消耗过多的内存或降低性能。...其次,PySpark采用懒执行方式,需要结果时才执行计算,其他时候不执行,这样会大大提升大数据处理的效率。...data.csv,并且有一个名为 'header' 的表头 # 你需要根据你的 CSV 文件的实际情况修改这些参数 df = spark.read.csv("path_to_your_csv_file...", df["salary"] * 1.1) # 显示转换后的数据集的前几行 df_transformed.show(5) # 将结果保存到新的 CSV 文件中 # 注意:Spark

    12910

    丹摩 | 重返丹摩(上)

    此外,数据转换功能也十分强大,例如数值标准化可将不同量级的数据统一到特定区间,便于模型的训练与比较;离散化操作则能将连续型数据转化为离散类别,适用于某些特定的分析场景。...以下是将 CSV 转换为 JSON 的代码示例: import csv import json # 读取 CSV 文件 with open('data.csv', 'r') as csv_file:...例如,在一个房屋价格预测的数据集中,原始特征有房屋面积、房间数量、房龄等,通过特征生成可以创建新特征如房屋面积与房间数量的比值等。...用户社区 平台还设有活跃的用户社区,用户可以在社区中自由提问、分享经验与心得。在社区中,用户可以与其他同行进行交流与互动,获取更多的技术思路与解决方案。...例如,用户反馈在模型评估结果展示方面希望能够增加可视化的对比图表,以便更直观地比较不同模型的性能。平台团队收到反馈后,经过评估和开发,在后续的版本更新中加入了这一功能,得到了用户的广泛好评。

    7810

    如何快速学会Python处理数据?(5000字走心总结)

    自己找些小作业练习 解决平常工作中的问题 可以尝试输出文章 重要的事情说三遍,多练!多练!多练! Python和数据分析都是实践学科,光学理论,不练习,是不会有任何收获的,学完之后不练就忘掉了。...总共有105个一级文件目录 每个一级文件下有若干个二级文件 每个二级文件下有若干个csv格式的数据 当工作中,碰到这样的问题时,我用最笨拙的方法——人工,一个一个文件整理,但是效率比较低,可能需要一个人一天的工作量...在Python语言中,声明变量的同时需要为其赋值,毕竟不代表任何值的变量毫无意义。...如果你想要改变语句流的执行顺序,也就是说你想让程序做一些决定,根据不同的情况做不同的事情。这个时候,就需要通过控制流语句来实现。 在Python中有三种控制流语句——if、for和while。...://www.runoob.com/python/python-nested-loops.html 本次实例中,需要读取一级文件目录名称、二级文件目录名称、三级csv文件目录名称,并逐个遍历它,于是选择了

    2K20

    python csv文件数据写入和读取(适用于超大数据量)

    文章目录 python csv文件数据写入和读取(适用于超大数据量) python csv文件数据写入和读取(适用于超大数据量) 一般情况下由于我们使用的数据量比较小,因此可以将数据一次性整体读入或者写入...但是当数据量比较大,比如有5G的数据量,这个时候想要一次性对所有数据进行操作就比较困难了。所以需要逐条将数据进行处理。 import csv # 在最开始创建csv文件,并写入列名。...相当于做一些准备工作 with open(savepath, 'w') as csvfile: #以写入模式打开csv文件,如果没有csv文件会自动创建。...writer = csv.writer(csvfile) # writer.writerow(["index","a_name","b_name"]) # 写入列名,如果没有列名可以不执行这一行...print line 需要注意从csv文件读出来的数据是字符串,不是浮点数。使用float(str)完成转换。

    2.7K10

    教程|Python Web页面抓取:循序渐进

    包括从简单的文本编辑器到功能齐全的IDE(集成开发环境)等,其中,在简单的文本编辑器中只需创建一个* .py文件并直接写代码即可。...如果收到消息表明版本不匹配,重新下载正确的webdriver可执行文件。 确定对象,建立Lists Python允许程序员在不指定确切类型的情况下设计对象。只需键入对象的标题并指定一个值即可。...第二条语句将变量“df”的数据移动到特定的文件类型(在本例中为“ csv”)。第一个参数为即将创建的文件和扩展名分配名称。因为“pandas”输出的文件不带扩展名,所以需要手动添加扩展名。...最简单的方法之一是重复上面的代码,每次都更改URL,但这种操作很烦。所以,构建循环和要访问的URL数组即可。 ✔️创建多个数组存储不同的数据集,并将其输出到不同行的文件中。...思考普通用户如何浏览互联网并尝试自动化的过程。这肯定需要新的库。用“import time”和“from random import randint”创建页面之间的等待时间。

    9.2K50
    领券