首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python数据分析——数据预处理

本节主要从重复值的发现和处理两方面进行介绍。 本节各案例所用到的df数据如下,在各案例的代码展示中将不再重复这部分内容。 【例】请使用Python检查df数据中的重复值。...本案例的代码及运行结果如下。 七、其他 7.1大小写转换 在数据分析中,有时候需要将字符串中的字符进行大小写转换。在Python中可以使用lower()方法,将字符串中的所有大写字母转换为小写字母。...也可以使用upper()方法,将字符串中的所有小写字母转换为大写字母。...按行增加数据 【例】对于上例中的DataFrame数据,增加一行数据,数据行的索引为"d" ,数值为[9,10,11],请使用Python实现。...按行删除数据 【例】对于上例中的DataFrame数据,请利用Python删除下面DataFrame实例的第四行数据。

94410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    针对SAS用户:Python数据分析库pandas

    读校验 读取一个文件后,常常想了解它的内容和结构。.info()方法返回DataFrame的属性描述。 ? 在SAS PROC CONTENTS的输出中,通常会发现同样的信息。 ? ?...检查 pandas有用于检查数据值的方法。DataFrame的.head()方法默认显示前5行。.tail()方法默认显示最后5行。行计数值可以是任意整数值,如: ?...缺失值的识别 回到DataFrame,我们需要分析所有列的缺失值。Pandas提供四种检测和替换缺失值的方法。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。...在删除缺失行之前,计算在事故DataFrame中丢失的记录部分,创建于上面的df。 ? DataFrame中的24个记录将被删除。

    12.1K20

    别找了,这是 Pandas 最详细教程了

    pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。....applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。...正如前面解释过的,为了优化代码,在一行中将你的函数连接起来。...() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row) 总而言之,pandas 是 python 成为出色的编程语言的原因之一 我本可以展示更多有趣的 pandas 功能,但是已经写出来的这些足以让人理解为何数据科学家离不开...总结一下,pandas 有以下优点: 易用,将所有复杂、抽象的计算都隐藏在背后了; 直观; 快速,即使不是最快的也是非常快的。

    2K20

    不会Pandas怎么行

    pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。...更新数据 将第八行名为 column_1 的列替换为「english」 在一行代码中改变多列的值 好了,现在你可以做一些在 excel 中可以轻松访问的事情了。....applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。...正如前面解释过的,为了优化代码,在一行中将你的函数连接起来。...() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row) 总而言之,pandas 是 python 成为出色的编程语言的原因之一 我本可以展示更多有趣的 pandas 功能,但是已经写出来的这些足以让人理解为何数据科学家离不开

    1.5K40

    Spark编程实验三:Spark SQL编程

    ,并写出Python语句完成下列操作: (1)查询所有数据; (2)查询所有数据,并去除重复的数据; (3)查询所有数据,打印时去除id字段; (4)筛选出age>30的记录; (5)将数据按...系统中,命名为employee.txt,实现从RDD转换得到DataFrame,并按“id:1,name:Ella,age:36”的格式打印出DataFrame的所有数据。...(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表所示的三行数据到MySQL中,最后打印出age的最大值和age的总和。...(2)配置Spark通过JDBC连接数据库MySQL,编程实现利用DataFrame插入如表所示的三行数据到MySQL中,最后打印出age的最大值和age的总和。...插入如表所示的三行数据到MySQL中,最后打印出age的最大值和age的总和。

    6810

    直观地解释和可视化每个复杂的DataFrame操作

    Pandas提供了各种各样的DataFrame操作,但是其中许多操作很复杂,而且似乎不太平易近人。本文介绍了8种基本的DataFrame操作方法,它们涵盖了数据科学家需要知道的几乎所有操作功能。...包含值的列将转换为两列:一列用于变量(值列的名称),另一列用于值(变量中包含的数字)。 ? 结果是ID列的值(a,b,c)和值列(B,C)及其对应值的每种组合,以列表格式组织。...另一方面,如果一个键在同一DataFrame中列出两次,则在合并表中将列出同一键的每个值组合。...how参数是一个字符串,它表示四种连接 方法之一, 可以合并两个DataFrame: ' left ':包括df1的所有元素, 仅当其键为df1的键时才 包含df2的元素 。...由于每个索引/行都是一个单独的项目,因此串联将其他项目添加到DataFrame中,这可以看作是行的列表。

    13.3K20

    Python工具分析风险数据

    对的, 一行代码就可以将全部数据读到一个二维的表结构DataFrame变量,感觉很简单有木有啊!!!...pandas的describe()函数能对数据进行快速统计汇总: 对于数值类型数据,它会计算出每个变量: 总个数,平均值,最大值,最小值,标准差,50%分位数等等; 非数值类型数据,该方法会给出变量的:...由head()方法我们可以发现数据中包含了数值变量、非数值变量,我们首先可以利用dtypes方法查看DataFrame中各列的数据类型,用select_dtypes方法将数据按数据类型进行分类。...一般来说,移除一些空值数据可以使用dropna方法, 当你使用该方法后,检查时发现 dropna() 之后几乎移除了所有行的数据,一查Pandas用户手册,原来不加参数的情况下, dropna() 会移除所有包含空值的行...移除proxy_host字段或srcip字段没有值的行 ? 移除所有行字段中有值属性小于10的行 5 统计分析 再对数据中的一些信息有了初步了解过后,原始数据有22个变量。

    1.7K90

    快速提升效率的6个pandas使用小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...以下面这个excel数据表为例,全部选中,按ctrl+c复制: 然后在python中执行pd.read_clipboard(),就能得到一模一样的dataframe数据表: pd.read_clipboard...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?...在上图中,glob()在指定目录中查找所有以“ data_row_”开头的CSV文件。 glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。...「行合并」 假设数据集按行分布在2个文件中,分别是data_row_1.csv和data_row_2.csv 用以下方法可以逐行合并: files = sorted(glob('data/data_row

    3.3K10

    别找了,这是 Pandas 最详细教程了

    pandas 相当于 python 中 excel:它使用表(也就是 dataframe),能在数据上做各种变换,但还有其他很多功能。 如果你早已熟知 python 的使用,可以直接跳到第三段。....applymap() 会给表 (DataFrame) 中的所有单元应用一个函数。...正如前面解释过的,为了优化代码,在一行中将你的函数连接起来。....iterrows() 使用两个变量一起循环:行索引和行的数据 (上面的 i 和 row) 总而言之,pandas 是 python 成为出色的编程语言的原因之一 我本可以展示更多有趣的 pandas...总结一下,pandas 有以下优点: 易用,将所有复杂、抽象的计算都隐藏在背后了; 直观; 快速,即使不是最快的也是非常快的。 它有助于数据科学家快速读取和理解数据,提高其工作效率

    1.2K00

    6个提升效率的pandas小技巧

    从剪切板中创建DataFrame pandas中的read_clipboard()方法非常神奇,可以把剪切板中的数据变成dataframe格式,也就是说直接在excel中复制表格,可以快速转化为dataframe...然后在python中执行pd.read_clipboard(),就能得到一模一样的dataframe数据表: pd.read_clipboard() ?...从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?...在上图中,glob()在指定目录中查找所有以“ data_row_”开头的CSV文件。 glob()以任意顺序返回文件名,这就是为什么使用sort()函数对列表进行排序的原因。...「行合并」 假设数据集按行分布在2个文件中,分别是data_row_1.csv和data_row_2.csv ?

    2.9K20

    独家 | 10 个简单小窍门带你提高Python数据分析速度(附代码)

    预览Pandas中的数据框数据(Dataframe) 分析预览(profiling)是一个帮助我们理解数据的过程,在Python中Pandas Profiling 是可以完成这个任务的一个工具包,它可以简单快速地对...如果你在运行代码单元出现异常时,可以在新行中键入%debug运行。这将打开一个交互式调试环境,它将您告诉你代码发生异常的位置。你还可以检查程序中分配的变量值,并在此处执行操作。点击q可退出调试器。...输出一个执行单元中的所有结果 下面来看一下Jupyter Notebook格中包含的几行代码: In[1]: 10+5 11+6 Out[1]: 17 通常一个执行单元只输出最后一行的结果...使用‘i’选项运行Python脚本文件 在命令行中运行python脚本的典型方法是:python hello.py。...因此,我们可以检查变量的值和程序中定义的函数的正确性。

    1.1K20

    再见 for 循环!pandas 提速 315 倍!

    上一篇分享了一个从时间处理上的加速方法「使用 Datetime 提速 50 倍运行速度!」,本篇分享一个更常用的加速骚操作。 for是所有编程语言的基础语法,初学者为了快速实现功能,依懒性较强。...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...但是在这种情况下,传递的lambda不是可以在Cython中处理的东西,因此它在Python中调用并不是那么快。 如果我们使用apply()方法获取10年的小时数据,那么将需要大约15分钟的处理时间。...如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。

    2.8K20

    这个Python开源库这样做数据分析

    本文中将使用纽约市(NYC)出租车数据集,其中包含标志性的黄色出租车在2009年至2015年之间进行的超过10亿次出行的信息。...打开数据集会生成一个标准的DataFrame并对其进行快速检查: ? 注意,单元执行时间太短了。这是因为显示Vaex DataFrame或列仅需要从磁盘读取前后5行数据。...所有这些统计信息都是通过对数据的一次传递来计算的。 ? 使用describe方法获得 DataFrame 的高级概览,注意这个 DataFrame 包含 18 列数据,不过截图只展示了前 7 列。...在筛选Vaex DataFrame时不会复制数据,而是仅创建对原始对象的引用,在该引用上应用二进制掩码。用掩码选择要显示的行,并将其用于将来的计算。...从describe方法的输出中,我们可以看到在fare_amount,total_amount和tip_amount列中有一些疯狂的异常值。对于初学者,任何这些列中的任何值都不应为负。

    1.3K20

    如何选择最佳的最近邻算法

    绘制结果 1.在python 3.6环境中安装ann-benchmarks 此步骤的代码需要在终端中执行。我在使用anaconda进行环境设置。这将需要几分钟才能完成。...您可以使用proc参数增加并发进程的数量,从而加快速度。我仅在安装完成后才升级pandas和scipy。 在撰写本文时,Ann基准仅支持Python 3.6。...2.上传自定义DataFrame 在此步骤中,将自定义数据框架文件复制到ann-benchmarks / data目录中。...对于这篇文章,我的DataFrame与使用的带有FastText句子嵌入的[Amazon产品数据集]。但是,我只是随机抽样5万行,以确保基准测试能够在合理的时间内运行。...这篇文章的所有代码都可以在我的Github存储库中找到。感谢您的阅读!

    2K30

    【强强联合】在Power BI 中使用Python(1)

    在Python脚本窗口我们就可以将编写好的脚本粘贴并运行了。 如前所述,我们一般是先在第三方编辑器中编辑并运行代码无误之后再放到Power BI 中运行: ? 得到结果: ?...注意:最后一行print(df)并非是必需的,我只是为了在编辑环境里查看下输出的结果而已,在贴到Power BI Desktop的时候并不需要该行。...Power BI Desktop会自动获取Python代码中数据类型是DataFrame的变量数据。 我们将代码复制到Power BI Desktop的Python脚本编辑器中,并运行: ?...运行Python脚本后,Power BI会提取所有数据类型为DataFrame的变量出来,我们上面只有一个变量df,我们改下代码来看看,直接拷贝第一个变量,然后改下2个变量的名字: import pandas...Python和R语言在Power BI中的应用要求是一样的,数据传递的类型都要求是DataFrame,具体的使用场景和使用要求完全相同,会R的朋友,也可以按上述思路进行操作。

    3.1K42

    Python进阶之Pandas入门(三) 最重要的数据流操作

    您将注意到,DataFrame中的索引是Title列,您可以通过单词Title比其他列稍微低一些的方式看出这一点。...,比如行和列的数量、非空值的数量、每个列中的数据类型以及DataFrame使用了多少内存。...请注意,在我们的movies数据集中,Revenue和Metascore列中有一些明显的缺失值。我们将在下一讲中处理这个问题。 快速查看数据类型实际上非常有用。...我们的movies DataFrame中有1000行和11列。 在清理和转换数据时,您将需要经常使用.shape。例如,您可能会根据一些条件过滤一些行,然后想要快速知道删除了多少行。...调用.shape确认我们回到了原始数据集的1000行。 在本例中,将DataFrames分配给相同的变量有点冗长。因此,pandas的许多方法上都有inplace关键参数。

    2.7K20

    如何使用Python基线预测进行时间序列预测

    建立基线对于任何时间序列预测问题都是至关重要的。 性能基准让您了解所有其他模型如何在您的问题上实际执行。 在本教程中,您将了解如何开发持久性预测,以便用Python计算时间序列数据集的性能基准级别。...制定基线预测的好技术的三个属性是: 简单:只需要很少或根本不需要训练和智力的方法。 快速:一种快速执行的方法,在计算上可以做出预测。...我们可以看到,第一行(索引0)的数据将被剔除,因为在第一个数据点之前没有用于进行预测的数据点。...我们将保留“训练集”的前66%的数据点,其余的34%的数据用于评估。在划分过程中,我们要注意剔除掉第一行数据(值为NaN)。 在这种情况下不需要训练了; 因为训练只是我们习惯做的,并不是必须的。...结论 在本教程中,您了解到了如何建立Python时间序列预测问题的基准性能。 具体来说,你了解到: 建立一个基线和你可以使用的持久化算法的重要性。 如何从头开始在Python中实现持久化算法。

    8.4K100

    Python骚操作,提取pdf文件中的表格数据!

    关于怎么快速学python,可以加下小编的python学习群:611+530+101,不管你是小白还是大牛,小编我都欢迎,不定期分享干货 每天晚上20:00都会开直播给大家分享python学习知识和路线方法...,群里会不定期更新最新的教程和学习方法,大家都是学习python的,或是转行,或是大学生,还有工作中想提升自己能力的,如果你是正在学习python的小伙伴可以加入学习。...输出结果: Python骚操作,提取pdf文件中的表格数据! 尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。...其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。...但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。

    7.4K10

    【强强联合】在Power BI 中使用Python(2)

    脚本编辑器中自带一句话: # 'dataset' 保留此脚本的输入数据 一行以“#”开头的语句,在Python的规范中表示注释,所以这句话并不会运行,它的意思是将你要进行修改的表用dataset来表示,...也就是说Python是通过dataset变量来访问数据的。...dataframe格式数据,“loc=1”代表在第一列数据后插入一列,列名是“add_100”,值是“Value”的值+100,第一行是1,add_100列第一行就是101,以此类推: ?...以上只是在循序渐进地告诉大家,powerquery中是可以用Python进行数据清洗的,并且清楚地告诉大家调用Python的方法,大家应该很熟练了吧。 以下才是重点(当然上面也是): ?...在IDE中运行无误后复制到powerquery的Python脚本编辑器中: ? 点击确定,返回结果: ? 后面两列就是我们想要的手机号和邮箱了。

    3.3K31
    领券