首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在Python程序中设置函数最大递归深度

在函数调用时,为了保证能够正确返回,必须进行保存现场和恢复现场,也就是被调函数结束后能够回到主调函数中离开时的位置然后继续执行主调函数中的代码。...这些现场或上下文信息保存在线程栈中,而线程栈的大小是有限的。 对于函数递归调用,会将大量的上下文信息入栈,如果递归深度过大,会导致线程栈空间不足而崩溃。...在Python中,为了防止栈崩溃,默认递归深度是有限的(在某些第三方开发环境中可能略有不同)。下图是IDLE开发环境的运行结果: ? 下图是Jupyter Notebook中的运行结果: ?...因此,在编写递归函数时,应注意递归深度不要太大,例如下面计算组合数的代码: ? 如果确实需要很深的递归深度,可以使用sys模块中的setrecursionlimit()函数修改默认的最大深度限制。

3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Atom中设置Python开发环境

    image.png 在Atom中设置Python开发环境 当然,网络上有很多很棒的文本编辑器。Sublime Text,Bracket,Atom等。...https://atom.io/themes/predawn-syntax 如果您想使用这其中的一种,或者找到适合您自己的主题,可以在主题按钮右侧的搜索栏中搜索它们。...它使用pycodestyle实用程序来确定代码的哪些部分需要格式化。autopep8能够修复pycodestyle可以报告的大部分格式问题。安装此软件包后,可能需要单击设置并选择“保存时格式化”选项。...欧拉工程网站有许多基于数学的问题,可以用任何编程语言来解决。由于我是Python新手,因此决定选择我在JavaScript中解决的一个欧拉问题,并在Python中解决相同的问题。...所以在Python中,我试图简单地使用相同的代码,但是将它翻译成Python,看起来像下面这样,我认为这并不是一个好的解决方案。

    4.9K80

    在Atom中设置Python开发环境

    1_Jxo80CShOCJQDwC2DPp2VQ.png 在Atom中设置Python开发环境 当然,这里有很多很棒的文本编辑器。Sublime Text,Brackets,Atom。...在这里,我将介绍如何使用Atom设置一个“友好的Python”的开发环境,一些对python编码有用的软件包,然后看看如何编写一些基本代码。...https://atom.io/themes/predawn-syntax 如果您想使用其中的一种,或者找到您自己的,可以在主题按钮右侧的搜索栏中搜索它们。...它使用pycodestyle实用程序来确定代码的哪些部分需要格式化。autopep8能够修复pycodestyle可以报告的大部分格式问题。安装此软件包后,可能需要点击设置并选择“保存时格式化”选项。...所以在Python中,我试图简单地使用相同的代码,但是将它翻译成Python,看起来像这样,并且让我的序言与这实际上不是一个好主意的事实相符。

    2.1K70

    在PowerBI的切片器中搜索

    在制作PowerBI报告时,一般来说,我们都会创建一些切片器。为了节省空间,一般情况下尤其是类目比较多的时候,大多采用下拉式的: ?...不过,在选项比较多的时候,当你需要查找某个或者某几个城市的销售额时,你会发现这是一件很难办的事情,比如我们要看一下青岛的销售额时: ?...你可能会来回翻好几遍才会找到,这时候再让你去找济南的销售情况,你恐怕会抓狂。 那,有没有能够在切片器中进行搜索的选项呢? 答案是:有的。 如图: ?...只要在Power BI Desktop的报告中鼠标左键选中切片器,按一下Ctrl+F即可。此时,切片器中会出现搜索框,在搜索框中输入内容点击选择即可: ?...如果想同时看青岛和济南的销售额,可以在选中青岛后,重新搜索济南,然后按住Ctrl点击鼠标左键即可: ? 发布到云端,同样也可以进行搜索: ?

    12.3K20

    DNN在搜索场景中的应用

    DNN在搜索场景中的应用潜力,也许会比你想象的更大。 --《阿里技术》 1.背 景 搜索排序的特征在于大量的使用了LR,GBDT,SVM等模型及其变种。...在FNN的基础上,又加上了人工的一些特征,让模型可以主动抓住经验中更有用的特征。 ? ? 3. Deep Learning模型 在搜索中,使用了DNN进行了尝试了转化率预估模型。...转化率预估是搜索应用场景的一个重要问题,转化率预估对应的输入特征包含各个不同域的特征,如用户域,宝贝域,query域等,各种特征的维度都能高达千万,甚至上亿级别,如何在模型中处理超高维度的特征,成为了一个亟待解决的问题...并且可以将这six-hot的最高维设置为500,在这种情况下可以将1w维的one-hot特征压缩到500维,实现20倍的特征压缩,如果输入特征是N万维,则可以将其分成N段,并且在每一段里根据上述寻找到的随机码本进行特征压缩...在以上的流程中,无法处理有重叠词语的两个查询短语的关系,比如“红色连衣裙”,“红色鞋子”,这两个查询短语都有“红色”这个词语,但是在往常的处理中,这两者并没有任何关系,是独立的两个查询ID,如此一来可能会丢掉一些用户对某些词语偏好的

    3.7K40

    在Kotlin中设置User-Agent以模拟搜索引擎爬虫

    本文将以亚马逊为例,介绍如何使用Kotlin编写一个爬虫程序,通过设置User-Agent头部来模拟搜索引擎爬虫,从而成功抓取亚马逊的商品信息。...因此,为了成功地爬取数据,我们需要设置一个合适的User-Agent头部,使我们的请求看起来像是来自合法的搜索引擎爬虫。...亚马逊目标分析在开始编写爬虫之前,我们需要明确我们的目标是什么,以及我们想要从亚马逊网站中抓取哪些信息。在本文中,我们的目标是抓取特定商品的价格和相关信息。...我们使用了Fuel库来简化HTTP请求的处理,并设置了User-Agent头部以模拟Googlebot。程序实现过程下面,让我们来详细讨论如何使用上述构建的爬虫框架来实现爬取亚马逊商品信息的过程。...最后,我们可以编写主程序来执行爬取任务,并将抓取的数据存储到文件或数据库中:fun main() { val crawler = AmazonCrawler() val url = "https

    31940

    在Solr中搜索人名的小建议

    搜索人名是我们在许多应用程序中经常用到的功能。比如对书店来说,按作者名检索的功能就相当重要。虽然很难起一个完美的名字,但是我们可以使用Solr的一些功能,使绝大多数英文名搜索达到绝佳的效果。...如果我们能够解决两个主要问题,人名搜索的问题就解决一大半了。 作者姓名重排,无论是在文档还是查询中,有些部分都被省略了:(Doug Turnbull, D. Turnbull, D. G....] [dougl] [dougla] [douglas] 有关此过滤器(以及Solr中的许多其他过滤器)需要注意的是,每个生成的标记最终在索引文档中占据相同的位置。...Turnbull出现的每一处(以及有David G. Turnbull的地方)! 结合 好的,进入下一环节。现在用户在搜索框中输入“Turnbull,D.”。然后呢?...首先,如上所述,所有生成的标记在标记流中共享位置。所以[D.]和[Douglas]在索引文档中处于相同的位置。这意味着,当位置重要时(如在词组查询中)“D.

    2.7K120

    Python在不同目录下导入模块的方法

    python在不同层级目录import模块的方法 使用python进行程序编写时,经常会调用不同目录下的模块及函数。本篇博客针对常见的模块调用讲解导入模块的方法。 ---- 1....同级目录下的调用 目录结构如下: – src |– mod1.py |– test1.py 若在程序test1.py中导入模块mod1, 则直接使用 *import mod1*或...调用子目录下的模块 目录结构如下: – src |– mod1.py |– lib | |– mod2.py |– test1.py 这时,如果想在程序...test1.py中导入模块mod2.py ,可以在lib件夹中建立空文件__init__.py文件 新的目录结构如下: – src |– mod1.py |– lib...---- 补充__init__.py 在python模块的每一个包中,都有一个__init__.py文件(这个文件定义了包的属性和方法)然后是一些模块文件和子目录,假如子目录中也有__init__.

    3K10

    python程序执行时间_用于在Python中查找程序执行时间的程序

    参考链接: Python程序来查找数字的因数 python程序执行时间  The execution time of a program is defined as the time spent by...程序的执行时间定义为系统执行任务所花费的时间。 众所周知,任何程序都需要一些执行时间,但我们不知道需要多少时间。...因此,不用担心,在本教程中,我们将通过使用datetime模块来学习它,并且还将看到查找大量因数的执行时间。 用户将提供大量的数字,我们必须计算数字的阶乘,也必须找到阶乘程序的执行时间 。...在编写Python程序之前,我们将尝试了解该算法。    ...现在,让我们开始通过简单地实现上述算法来编写Python程序。

    2K30

    在bios设置中关闭软驱的方法

    bios设置是电脑最基本的设置之一,它是计算机内主板上的一个ROM芯片上的程序,主要功能是为计算机提供最直接的硬件设置和控制。...很多人对于BIOS设置并不是很了解,更不要说去怎么设置了,接下来想要介绍的就是关于在bios设置中如何关闭软驱,下面就来看看操作方法吧!...1.首先需要进入到电脑的bios设置界面中去,重启电脑,然后在电脑启动的时候直接按下键盘删过的del键即可进入到bios设置界面中。...2.在出现的bios菜单中,利用键盘删过的方向键进行操作,选择菜单中的standard coms features并单击回车,之后选择打开界面中的到Drive A,再次单击回车,接下来选择“NONE”(...不过在根据以上在bios设置中关闭软驱的方法设置完成之后,务必要记得按下键盘上的F10保存设置哦。

    4.5K20

    必会算法:在旋转有序的数组中搜索

    大家好,我是戴先生 今天给大家介绍一下如何利用玄学二分法找出目标值元素 想直奔主题的可直接看思路2 ##题目 整数数组 nums 按升序排列,数组中的值互不相同 在传递给函数之前,nums...: 将数组第一个元素挪到最后的操作,称之为一次旋转 现将nums进行了若干次旋转 给你 旋转后 的数组 nums 和一个整数 target 如果 nums 中存在这个目标值 target 则返回它的下标...这样思路就非常清晰了 在二分查找的时候可以很容易判断出 当前的中位数是在第一段还是第二段中 最终问题会简化为在一个增序数据中的普通二分查找 我们用数组[1,2,3,4,5,6,7,8,9]举例说明 target...所以可以判断出 此时mid=4是处在第一段中的 而且目标值在mid=4的前边 此时,查找就简化为了在增序数据中的查找了 以此类推还有其他四种情况: mid值在第一段,且在目标值的前边 mid值在第二段...,且在目标值的前边 mid值在第二段,且在目标值的后边 mid值就是目标值 ###代码实现2 套用二分查找的通用公式 思路2的代码实现如下 public static int getIndex(int

    2.8K20

    NLP技术在搜索推荐场景中的应用

    NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性...今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。...2 NLP解决搜索场景相关性问题 NLP在搜索场景或电商场景的一大应用,就是解决相关性问题。...4 总结 本文主要介绍了NLP技术在搜索推荐场景中的应用。...在搜索推荐中,文本信息是很常见的一种信息来源,因此如何利用文本信息提升CTR预估、推荐等模型效果,以及如何利用NLP技术解决相关性问题,都是搜推广场景中很有价值的研究点。 END

    1.9K20
    领券