首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MySQL允许在唯一索引字段中添加多个NULL值

    今天正在吃饭,一个朋友提出了一个他面试中遇到的问题,MySQL允许在唯一索引字段中添加多个NULL值。...字段为null的数据: INSERT INTO `test` VALUES (1, NULL); INSERT INTO `test` VALUES (2, NULL); 并没有报错,说明MySQL允许在唯一索引字段中添加多个...对于其他引擎,唯一索引允许包含空值的列有多个空值。...网友给出的解释为: 在sql server中,唯一索引字段不能出现多个null值 在mysql 的innodb引擎中,是允许在唯一索引的字段中出现多个null值的。...**根据这个定义,多个NULL值的存在应该不违反唯一约束,所以是合理的,在oracel也是如此。 这个解释很形象,既不相等,也不不等,所以结果未知。

    10K30

    ​在Keras中可视化LSTM

    类似,在“文本生成”中,LSTM则学习特征(例如空格,大写字母,标点符号等)。LSTM层学习每个单元中的特征。 我们将使用Lewis Carroll的《爱丽丝梦游仙境》一书作为训练数据。...该模型体系结构将是一个简单的模型体系结构,在其末尾具有两个LSTM和Dropout层以及一个Dense层。...CuDNN-LSTM由CuDNN支持,只能在GPU上运行。 步骤2:读取训练资料并进行预处理 使用正则表达式,我们将使用单个空格删除多个空格。...步骤6:后端功能以获取中间层输出 正如我们在上面的步骤4中看到的那样,第一层和第三层是LSTM层。我们的目标是可视化第二LSTM层(即整个体系结构中的第三层)的输出。...这将是具有512个单位的LSTM层的激活。我们可以可视化这些单元激活中的每一个,以了解它们试图解释的内容。为此,我们必须将其转换为可以表示其重要性的范围的数值。

    1.4K20

    TFLearn:为TensorFlow提供更高级别的API 的深度学习库

    TFLearn功能包括: 通过教程和示例,易于使用和理解用于实现深度神经网络的高级API。 通过高度模块化的内置神经网络层,正则化器,优化器,指标进行快速原型设计 Tensorflow完全透明。...所有功能都是通过张量构建的,可以独立于TFLearn使用。 强大的辅助功能,可以训练任何TensorFlow 图,支持多个输入,输出和优化器。...轻松使用多个CPU / GPU的设备。...高级API目前支持大多数最近的深度学习模型,如Convolutions,LSTM,BiRNN,BatchNorm,PReLU,残留网络,生成网络……未来,TFLearn也将与最新版本保持同步最新的深度学习模型...net = tflearn.lstm(net, 64) net = tflearn.dropout(net, 0.5) net = tflearn.fully_connected(net, 5000,

    84620

    一个 tflearn 情感分析小例子

    的 pad_sequences 将 strings 转化成向量,用 tflearn.embedding 得到 word vector,再传递给 LSTM 得到 feature vector,经过全联接层后...n_words 为从数据库中取出来的词个数。..., 100]) 上一层的输出作为下一层的输入,input_dim 是前面设定的从数据库中取了多少个单词,output_dim 就是得到 embedding 向量的维度 net = tflearn.embedding...(net, input_dim=10000, output_dim=128) 模型用的 LSTM,可以保持记忆,dropout 为了减小过拟合 net = tflearn.lstm(net, 128,...dropout=0.8) fully_connected 是指前一层的每一个神经元都和后一层的所有神经元相连, 将前面 LSTM 学习到的 feature vectors 传到全网络中,可以很轻松地学习它们的非线性组合关系

    1.1K60

    LSTM模型在问答系统中的应用

    在问答系统的应用中,用户输入一个问题,系统需要根据问题去寻找最合适的答案。 1、采用句子相似度的方式。...该算法普适性较强,并且能有效的解决实际中的问题,但是准确率和召回率一般。 3、深度学习算法。依然是IBM的watson研究人员在2015年发表了一篇用CNN算法解决问答系统中答案选择问题的paper。...大量的实验证明,在大数据量的情况下,深度学习算法和传统的自然语言算法相比可以获得更优的结果。并且深度学习算法无需手动抽取特征,因此实现相对简便。...但是对于时序的数据,LSTM算法比CNN算法更加适合。LSTM算法综合考虑的问题时序上的特征,通过3个门函数对数据的状态特征进行计算,这里将针对LSTM在问答系统中的应用进行展开说明。...2016年watson系统研究人员发表了“LSTM-BASED DEEP LEARNING MODELS FOR NON-FACTOID ANSWER SELECTION”,该论文详细的阐述了LSTM算法在问答系统的中的应用

    1.9K70
    领券