首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于隐变量的推荐模型基于隐变量的推荐模型

基于隐变量的推荐模型 ?...这个损失函数由两部分构成,加号前一部分控制着模型的偏差,加号后一部分控制着模型的方差。...,但是实际中有一些用户会给出偏高的评分;有一些物品也会收到偏高的评分,甚至整个平台所有的物品的评分都会有个偏置,基于此,我们修正下我们的损失函数: ?...另外分解机的一个优势是可以部分解决冷启动问题,因为即使没有用户的反馈数据,我们也能够通过显性变量来预测出一个评分来,更多的关于FM的资料可以看我之前的文章CTR 预估之 FM。...总结 本文介绍了基于隐变量原理两种算法:矩阵分解svd和分解机FM,其求解方法有:梯度下降和交替最小二乘法;在介绍完求解方法后,我们讨论svd的一些变种,以及集大成者FM是如何进行多模型融合的。

1.7K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    生存分析:优化Cox模型的部分似然

    然后,我们定义了其对数部分似然和梯度,并通过一个实际的Python示例对其进行优化,以找到最佳的模型参数集。...我们可以将对数部分似然推导为: 在上述方程中: N是受试者数量。 θ = exp(βx)。 δⱼ表示事件(1:死亡,0:其他)。 为了拟合Cox模型,需要找到将负对数部分似然最小化的β系数。...由于连续风险的假设,Cox模型不允许存在并列情况。为了简单起见,我们向每个事件日期添加了一小部分随机噪声,以将它们排除。 我们按日期对数据集进行排序,因为部分似然需要有序的事件时间。...从图中可以看出,负对数部分似然是一个凸损失函数。 5.结论 在生存分析的背景下,我们介绍了Cox比例风险模型,并在输入数据上拟合了它。特别是,我们用Python编写了负对数部分似然及其梯度。...scikit-survival软件包基于GPL v3许可。

    36010

    SAP Fiori的ABAP编程模型-在Fiori中使用Fiori Elements讲解

    因此,SAP Fiori Element模板通过仍使用前端中的预定义扩展点来提供灵活性,从而极大地减少了必要的前端SAPUI5 JavaScript代码,并显着提高了开发人员的生产率。...有各种可用的Fiori元素模板。以下是SAPUI5 App开发中最常用的那些: 列表报告模板 –由列表和对象页面组成。...分析列表页面(ALP) –由带有条形图和图表以及列表的分析视图组成。 让我们考虑开发List-Report页面,这是最常用的基于Fiori的模板的应用程序。...OData集合应该始终是整个数据模型的主要实体。在这里,我们必须选择航空公司实体,因为它是主要实体。OData导航必须是必须在导航上显示的下一个实体。 7.单击下一个选项卡中的完成,将创建项目。...以下是航空公司和航班信息的元数据扩展文件的源代码。数据模型。将屏幕中的编号与UI注释表中的编号进行比较。 同样,我们为航班信息和航班时刻表创建元数据。

    1.1K10

    基于位置的点击模型

    主流的点击模型大都基于点击模型方面最基础的研究,认为用户在浏览搜索引擎时采用的是沿着搜索结果列表从上到下依次浏览的方式,根据这个假设,用户的浏览顺序与搜索结果的位置顺序是一致的。...因此大多数的点击模型都是基于位置的构建方式(我们称作基于位置的点击模型)。...PBM(Position-based Model )基于位置模型 Position-based Model 的假设:各搜索 Session 可产生多次点击行为,而文档是否被点击,由两个因素决定: 文档是否被检验...模型,如下图: 该模型首次将用户的浏览过程中的满意度行为引入模型描述中。...可以看到,以上的一系列的点击模型都是基于用户的检验顺序严格从上到下进行一遍以及所有结果具有同质属性这两个基本的假设进行研究的。

    1.1K20

    iOS基于GPUImage的图像形变设计(复杂形变部分)

    在上一部分,我们介绍了两种简单形变的GPUImage实现方式,包括自定义FragmentShader,和自定义顶点数组。这一部分,我们将介绍更为复杂的一些图像形变的实现。...Part3:基于自定义vertices的局部图像形变设计 区别于Part2中的自定义vertices和fragment数组的简单图像形变,这里的自定义vertices数组不仅仅局限于图像4个顶点,而是可以任意指定的...,越离眼睛中心形变越大)则支持能力较弱,这时候就需要使用这里的基于网格形变的自定义vertices全局图像形变方法来进行图像形变了。...下图是MLS算法的一个示例: ? 2) 基于规则的点位置计算:也是最传统的点计算方法。...受限:指传输到GPU的用于计算的数据太大,部分GPU可能无法支持 ---- 作者简介:dreamqian(钱梦仁),外号"大魔王",天天P图iOS工程师

    2.2K110

    基于协同过滤的推荐引擎(实战部分)

    基于协同过滤的推荐引擎(理论部分) 时隔十日,终于决心把它写出来。大多数实验都是3.29日做的,结合3.29日写的日记完成了这篇实战。...是的,它果然和数据库里的没两样,上篇我们介绍的一般评分估计也好,神奇的SVD评分估计也好,前提都是有一个长成下面这样的物品-用户矩阵 ?...那么首先要做的处理就是添加一列预测列,这一列里我们将rating列复制出一列,叫predict_rating,部分rating置零,当作要预测的评分,我们的程序就计算为零的rating,然后对比predict_rating...获得要比较的两个列向量 构建不了矩阵,就不构建了,想想评分估计函数的原理,不就是两个rating的列向量么,两个列向量的行对应的是同一个电影,上篇中用了很复杂的逻辑取出矩阵中都不为零的两列,我们也要保证两列中...准确的部分就是统计了,这里就不赘述了,其实可以看出欧氏距离不是很准,想做好一个推荐系统还需要做更细致的分析,此外,出了准确率的考虑,还有大数据量的问题,真实的数据总不像实验室里的,又小又规范,总有各种异常数据

    95750

    基于协同过滤的推荐引擎(理论部分)

    记得原来和朋友猜测过网易云的推荐是怎么实现的,大概的猜测有两种:一种是看你听过的和收藏过的音乐,再看和你一样听过这些音乐的人他们喜欢听什么音乐,把他喜欢的你没听过的音乐推荐给你;另一种是看他听过的音乐或者收藏的音乐中大部分是什么类型...今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西本身的属性,而是根据其他用户对它的喜好程度进行推荐的。...,是基于物品(item-based)的相似度,计算用户的距离,是基于用户(user-based)的相似度。...到底使用哪种相似度,取决于用户和物品的数量。基于物品的相似度会随着物品增加而增加,基于用户的相似度会随着用户的增加而增加。如果用户很多,则倾向于物品相似度计算方法。...对于大部分推荐引擎而言,用户数目往往大于物品数目,所以一般用物品相似度。

    92790

    iOS基于GPUImage的图像形变设计(简单形变部分)

    答案是肯定的。对于形变的处理,可以是基于FragmentShader的,也可以是基于VertexShader的,也可以通过自定义顶点vertices和textureCoordinates来实现。...下面会分别介绍一下如何通过设计来实现基于GPUImage的图像形变。 Part1:基于FragmentShader的图像形变设计 其实,有一部分形变是可以基于FragmentShader去实现的。...不过,一般而言,还是设置超出屏幕部分为纯色底图(纯白、纯黑)比较合适~ 小结一下: 基于FragmentShader的图像形变设计,主要是基于坐标点的x,y的简单变换得到的,适合于旋转、翻转、缩放、一些规则四边形变形等情况...Part2:基于自定义vertices的图像形变设计 对于Part1中举例的简单形变而言,通过巧妙的传递顶点坐标,可以实现在使用默认Shader的情况下的图像形变。具体示例如下: ?...我们会在“基于GPUImage的图像形变设计(复杂形变部分)”再做介绍~ ---- 作者简介:dreamqian(钱梦仁),外号"大魔王",天天P图iOS工程师

    1.9K90

    基于协同过滤的推荐引擎(实战部分)

    大多数实验都是3.29日做的,结合3.29日写的日记完成了这篇实战。...那么首先要做的处理就是添加一列预测列,这一列里我们将rating列复制出一列,叫predict_rating,部分rating置零,当作要预测的评分,我们的程序就计算为零的rating,然后对比predict_rating...2、遍历十万条数据,读的时候记录userId,同时累加计数器,userId改变的时候,计数器的数量除以3取整,得到要置零的数量,然后再把这个userId的1/3置零。...03 获得要比较的两个列向量 构建不了矩阵,就不构建了,想想评分估计函数的原理,不就是两个rating的列向量么,两个列向量的行对应的是同一个电影,上篇中用了很复杂的逻辑取出矩阵中都不为零的两列,我们也要保证两列中...准确的部分就是统计了,这里就不赘述了,其实可以看出欧氏距离不是很准,想做好一个推荐系统还需要做更细致的分析,此外,出了准确率的考虑,还有大数据量的问题,真实的数据总不像实验室里的,又小又规范,总有各种异常数据

    1K70

    基于协同过滤的推荐引擎(理论部分)

    记得原来和朋友猜测过网易云的推荐是怎么实现的,大概的猜测有两种:一种是看你听过的和收藏过的音乐,再看和你一样听过这些音乐的人他们喜欢听什么音乐,把他喜欢的你没听过的音乐推荐给你;另一种是看他听过的音乐或者收藏的音乐中大部分是什么类型...今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西本身的属性,而是根据其他用户对它的喜好程度进行推荐的。...,是基于物品(item-based)的相似度,计算用户的距离,是基于用户(user-based)的相似度。...到底使用哪种相似度,取决于用户和物品的数量。基于物品的相似度会随着物品增加而增加,基于用户的相似度会随着用户的增加而增加。如果用户很多,则倾向于物品相似度计算方法。...对于大部分推荐引擎而言,用户数目往往大于物品数目,所以一般用物品相似度。

    1K50

    SAP Fiori的ABAP编程模型-在Fiori中使用Fiori Elements讲解

    因此,SAP Fiori Element模板通过仍使用前端中的预定义扩展点来提供灵活性,从而极大地减少了必要的前端SAPUI5 JavaScript代码,并显着提高了开发人员的生产率。...有各种可用的Fiori元素模板。以下是SAPUI5 App开发中最常用的那些: 列表报告模板 –由列表和对象页面组成。...分析列表页面(ALP) –由带有条形图和图表以及列表的分析视图组成。 让我们考虑开发List-Report页面,这是最常用的基于Fiori的模板的应用程序。...OData集合应该始终是整个数据模型的主要实体。在这里,我们必须选择航空公司实体,因为它是主要实体。OData导航必须是必须在导航上显示的下一个实体。 7.单击下一个选项卡中的完成,将创建项目。...以下是航空公司和航班信息的元数据扩展文件的源代码。数据模型。将屏幕中的编号与UI注释表中的编号进行比较。 同样,我们为航班信息和航班时刻表创建元数据。

    1.1K20

    基于rxjava的生产消费模型

    一、前言 最近在看springcloud的熔断机制的实现,发现底层使用的rxjava实现,就看了下rxjava的使用,发现rxjava使用可也便捷实现前面讲解的定时生产与消费。...二、rxjava版生产消费实现 在简单抽象下要实现的功能,定时器线程间隔3秒生成一个任务,假如任务里面有3个子任务,则消费线程要分3秒,每秒消费一个子任务。 ?...但是我们要模拟是只需要3s的情况,所以使用take方法只获取Observable.interval观察者对象里面的TAG_QUEUE_SIZE=3个元素。...这里保证了生成的观察这对象只会发射出3个元素,并且是间隔1s发出。但是这时候发射出的是0,1,2而不是代码(1)生成的任务。所以使用flatMap方法对元素进行转换,转换为代码(1)生成的元素。...image.png 可知同一个元素在连续的3s内被消费了。 三、总结 rxjava的功能挺强大的,合理的排列他提供的功能可以大大简化我们的开发成本。 作者:加多

    66220

    基于语言模型的拼写纠错

    中文拼写纠错的现有工作有很多[1],总的来说大致可分为两个阶段,也有部分模型将这两个阶段联合建模。...论文[4]提出的拼写纠错系统包含三个组件:(1)基于语言模型来生成校正候选句;(2)统计机器翻译模型提供校正候选句;(3)支持向量机(SVM)分类器,以重新排列前两个组件提供的候选句,输出最可能的纠正后的句子...论文[5,6,7,8]也是基于语言模型的纠错。...语言模型在基于统计模型的机器翻译,汉语自动分词和句法分析中有着广泛的应用,目前采用的主要是n元语法模型(n-gram language model)。...否则,得分最高的候选句即作为纠错结果输出。 3.实验结果 使用语言模型结合困惑集的方法,能解决错字(包括字音字形相似的字)和错词的纠正。部分纠错结果如下: ?

    7.7K82

    Netty的线程模型和基于Reactor模型的实现

    Netty的线程模型是其设计中的重要组成部分,它采用了基于Reactor模型的线程模型,为开发者提供了高度可扩展、高并发的网络编程能力。...本文将首先介绍Netty的线程模型,然后详细解析Netty如何基于Reactor模型实现高性能的网络通信。最后,我们将通过一个简单的代码示例来演示Netty的线程模型和Reactor模型的实际应用。...Worker线程池 |+------------------------+Netty基于Reactor模型的实现Netty的线程模型是基于Reactor模型实现的,Reactor模型是一种事件驱动的设计模式...代码示例下面我们通过一个简单的代码示例来演示Netty的线程模型和基于Reactor模型的实现。...基于Reactor模型的设计思想,使得Netty能够以事件驱动的方式处理并发请求,提高了系统的并发处理能力。通过一个简单的代码示例,我们演示了Netty的线程模型和基于Reactor模型的实际应用。

    24820

    基于回归模型的销售预测

    基于回归模型的销售预测 小P:小H,有没有什么好的办法预测下未来的销售额啊 小H:很多啊,简单的用统计中的一元/多元回归就好了,如果线性不明显,可以用机器学习训练预测 数据探索 导入相关库 # 导入库...# 初选回归模型 model_names = ['BayesianRidge', 'XGBR', 'ElasticNet', 'SVR', 'GBR'] # 不同模型的名称列表 model_br =...model_gbr] pre_y_list = [model.fit(X_train, y_train).predict(X_test) for model in model_list] # 各个回归模型预测的...model_gs.fit(X_train, y_train) # 训练交叉检验模型 print('Best score is:', model_gs.best_score_) # 获得交叉检验模型得出的最优得分...= model_gs.best_estimator_ # 获得交叉检验模型得出的最优模型对象 pre_y = model_xgbr.predict(X_test) # 模型评估 优于上次 model_metrics_list

    63120

    基于序列模型的随机采样

    对于目前基于神经网络的序列模型,很重要的一个任务就是从序列模型中采样。比如解码时我们希望能产生多个不一样的结果,而传统的解码算法只能产生相似的结果。...又比如训练时使用基于强化学习或者最小风险训练的方法需要从模型中随机采集多个不一样的样本来计算句子级的损失,而一般的确定性方法不能提供所需要的随机性。...本文回顾了一系列常用的序列模型采样方法,包括基于蒙特卡洛的随机采样和随机束搜索,以及最近提出的基于Gumbel-Top-K的随机束搜索。表1展示了这三种方法各自的优缺点。...图4 束搜索最终结果 序列模型中的随机采样 从序列模型中采集多个样本有两种经典的方法:基于蒙特卡洛的随机采样和基于蒙特卡洛的束搜索。...基于蒙特卡洛的随机采样虽然简单,但是它面临着严重的效率问题。如果模型输出的下一个词分布熵很低,即对于个别词输出概率特别高,那么采集到的样本将有很大一部分重复,比如接近收敛时候的模型。

    89020

    基于递归网络的语言模型

    在这种基于语言的模型中,神经网络读取维基百科文章的一部分,并预测文本的下一个字节。 具体来说,我比较存储单元LSTM,GRU和MGU是否使用层归一化和三种初始化权重的方法。...Text8任务的性能是以每字符位数(BPC)来衡量的,它描述除了我们的模型重建文本之外,需要多少存储空间。每字符位数越少,说明我们的模型学习的文本结构就越好。...存储单元设计 普通的递归神经网络在每个时间步都会计算一个全新的隐状态。这使得他们难以在许多时间步中记住细节。最常见的解决方案是LSTM细胞(LSTM cell),它使用随时间步保留的本地环境的值。...有趣的是,GRU在这里表现优于LSTM,尽管它使用的参数较少。通常,更多的参数是压缩任务(如语言建模)的一大优势。MGU使用最少的参数,所以对这个任务表现最差。...在我的实验中初始化的选择对性能没有太大的影响。讽刺的是,方差缩放初始化导致出现更大的性能差异。正交初始化不能显示出多于效果最好的简单的Xavier初始化的优势。

    1.3K50
    领券