基于卷积神经网络CNN的图像分类+基于Tkinter自制GUI界面点击分类 大家好,我是Peter~ 本文主要包含两个方向的内容: 如何使用卷积神经网路对一份数据进行cats和dogs的分类:图像数据生成...、搭建CNN模型及可视化、模型训练与预测、损失精度可视化 将构建的CNN网络模型保存后,基于Tkinter制作一个简单的GUI界面,选择图片运行立即显示分类结果 过程详解,代码注释极其详细,源码运行即可出结果...width_shift_range=0.1, # 水平和垂直方向的范围;相对于总宽度和高度的比例 height_shift_range=...构建CNN网络 构建的CNN网络: model=Sequential() # 卷积层1 model.add(Conv2D(32,(3,3),activation='relu',input_shape=...导入模型 导入搭建好的CNN模型的h5文件: # 导入训练好的模型 model = load_model("model_cats_dogs_10category.h5") 图像窗口初始化 GUI界面的窗口参数初始化
我结合着自己的理解和Karpathy的介绍,重新看确实又收获了不少,以前觉得不明白的地方现在也清晰了,所以重新写这个再看篇,仅供参考 CNN的组成 convolution layer pooling layer...细说卷积 卷积是CNN的重心,也是这篇博客的重点....为何说局部连接是CNN的卖点呢?通过局部连接的方式避免了参数的爆炸式增长(对比全连接的方式). 通过下面的参数共享可以大大的缩减实际的参数量,为训练一个多层的CNN提供了可能....1*1的卷积 用的也挺多的,Residual和Inception的实现里面就有用1*1卷积的. ? ?...如果224x224的输入图片经过卷积层和汇聚层之后得到了[7x7x512]的数组,那么,384x384的大图片直接经过同样的卷积层和汇聚层之后会得到[12x12x512]的数组(因为途径5个汇聚层,尺寸变为
接下来计算第一个通道和卷积核对应第一层的卷积,同样的,计算第二、三个通道和卷积核对应第二、三层的卷积,卷积就是矩阵对应元素相乘之后再相加。最后这三个结果相加,在加上偏置,作为输出。...卷积神经网络的反向传播: 首先回顾一下一般的前馈神经网络的反向传播: 详细内容可参看:神经网络基础和反向传播推导 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,...2,CNN反向传播的不同之处: 首先要注意的是,一般神经网络中每一层输入输出a,z都只是一个向量,而CNN中的a,z是一个三维张量,即由若干个输入的子矩阵组成。其次: 池化层没有激活函数。...由于卷积层可以有多个卷积核,各个卷积核的处理方法是完全相同且独立的,为了简化算法公式的复杂度,我们下面提到卷积核都是卷积层中若干卷积核中的一个。接下来看具体的CNN反向传播步骤。...c)只有卷积层的W,b需要求出,先看w: 再对比一下普通网络的求w梯度的公式,发现区别在于,对前一层的输出做翻转180度的操作: 而对于b,则稍微有些特殊,因为在CNN中,误差
重复的地方不再说明,主要说说不同的地方。 那篇文章中实现的CNN是用于英文文本二分类的,并且在卷积之前,有一层embedding层,用于得到文本的向量表示。...接着按照batch_size分批将train_x输入至网络TextCNN中进行训练,经过三个卷积层的卷积和max-pool之后,合并得到一个向量,这个向量代表了各个卷积层学到的关于训练数据的某些特征,最后将这个向量输入到一个单层的神经网络并用...CNN对于分类任务较为擅长,但是卷积和pool丢失了一些上下文信息,因此在对上下文把握方面,RNN还是更甚一筹。...当然,有研究表明CNN能够通过调整卷积层的各种参数来获取上下文的特征,但限于我现有的知识水平,并不清楚该怎么调参。只有等将来对CNN和RNN理解更进一步时再继续完善这个任务吧。...附: 本文所实现的基于CNN进行垃圾邮件检测的项目下载地址 https://github.com/clayandgithub/zh_cnn_text_classify
重复的地方不再说明,主要说说不同的地方。 那篇文章中实现的CNN是用于英文文本二分类的,并且在卷积之前,有一层embedding层,用于得到文本的向量表示。...接着按照batch_size分批将train_x输入至网络TextCNN中进行训练,经过三个卷积层的卷积和max-pool之后,合并得到一个向量,这个向量代表了各个卷积层学到的关于训练数据的某些特征,最后将这个向量输入到一个单层的神经网络并用...CNN对于分类任务较为擅长,但是卷积和pool丢失了一些上下文信息,因此在对上下文把握方面,RNN还是更甚一筹。...当然,有研究表明CNN能够通过调整卷积层的各种参数来获取上下文的特征,但限于我现有的知识水平,并不清楚该怎么调参。只有等将来对CNN和RNN理解更进一步时再继续完善这个任务吧。...附:本文所实现的基于CNN进行垃圾邮件检测的项目下载地址 https://github.com/clayandgithub/zh_cnn_text_classify
数据预处理 当我们通过用pyplot库绘制其中一些图像时,我们可以观察到它们的大小不同,这对于以后的训练过程是不利的。另请注意,我们已用指示仙人掌和非仙人掌的1和0标记了所有图像。 ?...CNN结构与训练 卷积神经网络包含3层卷积层和2个完全连接层。每个卷积层都有一个3 x 3的滤波器,该滤波器的步幅为2,输出为64个节点。之后,数据会通过最大池化层,以防止过度拟合并提取有用的信息。...(pool_size=(2,2))) model.add(Conv2D(64, (3,3))) model.add(Activation(‘relu’)) model.add(MaxPooling2D(...pool_size=(2,2))) model.add(Conv2D(64, (3,3))) model.add(Activation(‘relu’)) model.add(MaxPooling2D(pool_size...它达到了近99%的准确率,这是惊人的。 ? 05. 结论 这篇文章的主要目的是与大家分享卷积网络的结构,解决了这类二元分类问题,例如猫和狗的图像分类。
写在前面 如题,这篇文章将尝试从卷积拆分的角度看一看各种经典CNN backbone网络module是如何演进的,为了视角的统一,仅分析单条路径上的卷积形式。...(M \times K \times K) 进行了各种拆分或分组(同时引入激活函数),这些拆分和分组通常会减少参数量和计算量,这就为进一步增加卷积核数量(N)让出了空间,同时这种结构上的变化也是一种正则...,通过上述变化来获得性能和计算量之间的平衡。...rightarrow (M \times tM + K \times K \times tM + tM \times N) \t = 6 ] [y6h7x4yoxj.png] 小结 最后小结一下,早期的CNN...分组:如果多个卷积核放在一起,可以构成4D的tensor,增加的这一数量维上可以分组group。 不同拆分和分组的方式排列组合就构成了各种各样的module。
一、选用卷积的原因 局部感知 简单来说,卷积核的大小一般小于输入图像的大小(如果等于则是全连接),因此卷积提取出的特征会更多地关注局部 —— 这很符合日常我们接触到的图像处理。...下图中,第二层到第三层,其中每个卷积核大小为5x5x6,这里的6就是28x28x6中的6,两者需要相同,即每个卷积核的“层数”需要与输入的“层数”一致。...有几个卷积核,就输出几个feature map,下图中,与第二层作卷积的卷积核有10个,故输出的第三层有10个通道。 ?...举例2: NxN大小的输入(暂时不考虑通道数),与FxF大小的卷积核(暂时不考虑个数)做卷积,那么输出大小为多大?...图像边界信息丢失,即有些图像角落和边界的信息发挥作用较少。因此需要padding。
本文主要是实现了一个简单的卷积神经网络,并对卷积过程中的提取特征进行了可视化. ?...卷积神经网络直接用原始图像的全部像素作为输入,但是内部为非全连接结构.因为图像数据在空间上是有组织结构的,每一个像素在空间上和周围的像素是有关系的,和相距很远的像素基本上是没什么联系的,每个神经元只需要接受局部的像素作为输入...权值共享和池化两个操作使网络模型的参数大幅的减少,提高了模型的训练效率....Padding 卷积核在提取特征时的动作成为padding,它有两种方式:SAME和VALID。卷积核的移动步长不一定能够整除图片像素的宽度,所以在有些图片的边框位置有些像素不能被卷积。...这种越过边缘的取样是 same padding。如过移动步长为1,那么得到和原图一样大小的图像。 如果步长很大,超过了卷积核长度,那么same padding,得到的特征图也会小于原来的图像。
(2)卷积层(Convolution Laye) 在处理图像数据时,CNN使用的卷积核的宽度和高度的一样的,但是在text-CNN中,卷积核的宽度是与词向量的维度一致!...由于我们的输入是一个句子,句子中相邻的词之间关联性很高,因此,当我们用卷积核进行卷积时,不仅考虑了词义而且考虑了词序及其上下文(类似于skip-gram和CBOW模型的思想)。...三、基于keras的TextCNN模型的构建、训练与测试 1、基础版CNN(模仿LeNet-5) LeNet-5是卷积神经网络的作者Yann LeCun用于MNIST识别任务提出的模型。...')(embed) cnn3 = MaxPooling1D(pool_size=46)(cnn3) # 合并三个模型的输出向量 cnn = concatenate([cnn1,...(8)基于 word2vec 和 CNN 的文本分类 :综述 & 实践 本人博文NLP学习内容目录: 一、NLP基础学习 1、NLP学习路线总结 2、TF-IDF算法介绍及实现 3、NLTK使用方法总结
那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文。 1....卷积层和全连接层 在CNN提出之前,我们所提到的人工神经网络应该多数情况下都是前馈神经网络,两者区别主要在于CNN使用了卷积层,而前馈神经网络用的都是全连接层,而这两个layer的区别又在于全连接层认为上一层的所有节点下一层都是需要的...转置卷积层 讲完卷积层后,我们来看CNN中另一个进行卷积操作的层次转置卷积层,有时我们也会称做反卷积层,因为他的过程就是正常卷积的逆向,但是也只是size上的逆向,内容上不一定,所以有些人会拒绝将两者混为一谈...希望笔者上述的分析和解释能对刚入门CNN的同学有所帮助,而且笔者是从事iOS开发的,对于CNN和深度学习也是刚刚入门,希望各位AI大牛们不吝指教。 5....关于转置卷积和卷积的联系和区别
MDPI Mathematics上的论文,提出了基于卷积神经网络和双向门控循环单元(CNN + BiGRU)注意力的心跳声分类,论文不仅显示了模型还构建了完整的系统。...以前的研究 论文总结了以前的研究 数据集和预处理 应用层显示了应用区域,包括医院、政府办公室、救护车、养老院和体育馆。...信号的下采样率为22050,频率范围为30至1200 Hz。 CNN + BiGRU 作者试图直接在原始时间序列数据上进行训练,但是这导致梯度消失问题和非常长的训练时间。...CNN + BiGRU模型 由CNN + BiGRU组成的深度学习模型,并使用注意力模型对音频样本进行推理。...在通过GRU单元对时间序列数据进行处理之前,对二维卷积层进行批处理归一化和概率为0.3的Dropout,防止过拟合和泄漏 CNN层期望提取关键的MFCC系数,并以时间序列数据的形式提供给BiGRU层。
支持向量机(SVM):用于分类任务的边界最大化方法。 决策树与随机森林:基于树的模型,适用于分类与回归任务。 K 近邻(KNN):基于实例的学习方法。 朴素贝叶斯:基于贝叶斯定理的分类器。...CIFAR-10 图像分类:使用 PyTorch 搭建卷积神经网络(CNN),对 CIFAR-10 数据集进行图像分类任务。...卷积神经网络(CNN) 2.1 CNN 基础 知识点: 卷积层:卷积操作、滤波器、特征图。 池化层:最大池化、平均池化。 全连接层:分类决策。...理解卷积神经网络对图像特征的提取和重构能力。 YOLO 目标检测:使用预训练的 YOLO 模型对一组图像进行目标检测,理解目标检测模型的原理和应用。 3....案例解析: 课程学习:参加 Stanford 大学的 CS231n(卷积神经网络视觉识别)课程,系统学习计算机视觉的理论和实践,提高专业知识水平。
Google 的一项最新工作:改变基于 GEMM 实现的 CNN底层算法提出的新方法。...,目前主流的卷积算法都是基于GEMM来实现的。...基于 GEMM 的卷积算法及其缺点 卷积神经网络(CNN)在CV问题中的表现很出色,有多种在算法层面对齐进行实现的方法:直接卷积算法,采用7层循环,快速卷积算法,利用傅里叶变换来进行卷积,以及基于GEMM...间接卷积算法的缺点 间接卷积算法作为GEMM-BASED CNN算法的一种改进,能极大的提升计算效率,但是存在以下几个限制: 1....这个算法是为NHWC layout设计的,也就是说应用范围比较窄,不能和目前的主流方法相比。 2. 算法适用于前向传播中的卷积操作,而在反向传播中作用不大,不及基于col2im和row2im的算法。
文本相似在问答系统中有很重要的应用,如基于知识的问答系统(Knowledge-based QA),基于文档的问答系统(Documen-based QA),以及基于FAQ的问答系统(Community-QA...像 对于问题的内容,需要进行相似度匹配,从而选择出与问题最接近,同时最合理的答案。本节介绍 基于bert的余弦距离计算相似度。...学习bert可以看这里:https://blog.csdn.net/u014365862/article/details/104412737 训练/预测: # 绘图案例 an example of matplotlib..., so we don't get a duplicate # of the last plot plt.close() ''' from keras.layers import * from bert4keras.backend
A:以下是一个基于 FPGA 的一维卷积神经网络(1D-CNN)算法加速实现的案例,仅供参考: 项目案例概述: 该项目旨在通过 FPGA 实现 1D-CNN 的加速,以提高对一维序列数据的处理速度。...在时钟上升沿或复位信号有效时,根据复位信号的状态对输出数据和临时结果进行初始化或执行卷积计算。卷积计算通过嵌套的循环实现,将输入数据与卷积核对应元素相乘并累加,得到卷积结果。...通过将上述卷积层和池化层等模块按照网络结构进行组合和连接,就可以构建完整的 1D-CNN 加速器,并在 FPGA 上实现对一维序列数据的高效处理。...除了1D-CNN,还有哪些神经网络算法可以在FPGA上加速? 1、二维卷积神经网络(2D - CNN) 算法原理: 2D - CNN 主要用于处理具有二维结构的数据,如图像。...FPGA 加速优势: 可以对卷积和池化操作进行并行计算。FPGA 能够同时处理多个像素点的卷积运算,通过合理的资源分配和流水线设计,大大提高计算速度。
EasyBert 基于Pytorch的Bert应用,包括命名实体识别、情感分析、文本分类以及文本相似度等(后续更新其他方向相关模块),并有相关数据与深度训练优化方式api。...各个子项目大都为开源工作,本项目仅做相应处理以及提供一个已训练的预测接口,方便需求者进行快速的使用。...,本阶段所训练的模型效果可以满足相应任务的基本需求。...现阶段通过各任务接口的时间相对慢,大都是在模型加载阶段。若想提升相应的速度,请使用者在接受相应精度损失的前提下更换AlBert进行相应任务的重新预训练。...项目 代码,数据集 获取方式: 关注微信公众号 datayx 然后回复 bert 即可获取。
这里总结了大多数公司将新产品推荐给客户的两种主要不同方法,它们是: 基于内容的过滤:这种方法的建议与你感兴趣的主题及其属性高度相关。...例如:假设你喜欢阿森纳足球俱乐部及其在YouTube上的内容,那么你更有可能看到AFTV,英超联赛等建议,因为所有这些都具有足球,阿森纳等共同的属性。 协同过滤:这更多是基于多个用户及其兴趣的推荐。...例如:假设你的朋友喜欢曼彻斯特联队,皇家马德里和英超,而你喜欢阿森纳,巴塞罗那和德甲联赛,那么你的朋友很有可能会收到有关拜仁慕尼黑的建议,而你可能会收到涉及巴黎圣日耳曼的建议,因为你们俩都喜欢足球反之亦然...因此,我尝试在youtube趋势视频数据集上创建一个基于内容的推荐系统,该数据集从以下Kaggle来源获得:Trending videos 2021,其中我只使用了英国版本。...因此,我们需要为感兴趣的单词创建编码,并在我们的兴趣和标题的编码之间找到相似之处。我使用余弦相似度来确定向量之间的相似度。简单单词中的余弦相似度是两个给定向量的内积,它的值越大表示两个向量越相似。
TextCNN image.png 模型结构如图,图像中的卷积都是二维的,而TextCNN则使用「一维卷积」,即filter_size * embedding_dim,有一个维度和embedding...MaxPooling1D(pool_size=37)(cnn2) cnn3 = Conv1D(256, 5, padding='same', strides=1, activation='relu...')(embed) cnn3 = MaxPooling1D(pool_size=36)(cnn3) # 合并三个模型的输出向量 cnn = concatenate([cnn1,...TextRCNN 一般的 CNN 网络,都是卷积层 + 池化层。TextRCNN是将卷积层换成了双向 RNN,所以结果是,两向 RNN + 池化层。...BiLSTM + Attention 从前面介绍的几种方法,可以自然地得到文本分类的框架,就是先基于上下文对token编码,然后pooling出句子表示再分类。