首页
学习
活动
专区
圈层
工具
发布

【哈工大SCIR】多模态情感分析简述

如何分析多模态数据(本文指声音,图像和文字,不涉及传感器数据)中的情感,是当前情感分析领域面临的机遇和挑战。 一方面,以往情感分析聚焦于单个模态。如文本情感分析着眼于分析,挖掘和推理文本中蕴含的情感。...综上来讲,多模态情感分析技术的发展源于实际生活的需求,人们以更加自然的方式表达情感,技术就应有能力进行智能的理解和分析。...这些都是当前多模态情感分析领域感兴趣的问题。为了能够更好的介绍多模态情感分析领域的相关研究,本文梳理了目前多模态情感分析领域相关任务并总结了常用的数据集及对应的方法。...表2 多模态情感分析相关数据集信息表 ? 总结 本文简单梳理了多模态情感分析领域的相关任务,总结了与任务对应的数据集及一些典型的方法。...虽然多模态数据提供了更多的信息,但是如何处理和分析多模态信息、如何融合不同模态的信息还是多模态情感分析领域需要解决的主要问题。 参考文献 [1] Truong T Q, Lauw H W.

5.1K61

多模态情感识别_多模态融合的情感识别研究「建议收藏」

摘要: 情感是人们在沟通交流的过程中传递的重要信息,情感状态的变化影响着人们的感知和决策。情感识别是模式识别的重要研究领域,它将情感维度引入人机交互。...情感表达的模态包括面部表情、语音、姿势、生理信号、文字等,情感识别本质上是一个多模态融合的问题。...提出一种多模态融合的情感识别算法,从面部图像序列和语音信号中提取表情和语音特征,基于隐马尔可夫模型和多层感知器设计融合表情和语音模态的情感分类器。...对语音信号作时域、和频域分析,提取各帧的短时平均能量、基音频率和共振峰作为语音特征。...提出的多模态识别算法较好地利用了视频和音频中的情感信息,相比于仅利用语音模态的识别结果有较大的提升,相比于表情模态的识别结果也有一定改进,是一种可以采用的情感识别算法。

1.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    中南 | 情感分析革命:UniSA 引领多模态情感分析进入新纪元!(含源码!)

    引言  情感分析是自然语言处理中的一项重要任务。它旨在利用多模态信息实现情绪分类进而了解人们的情绪状态。...它由多个子任务组成,例如:会话情感识别(ERC)、aspect-based的情感分析(ABSA)和多模态情感分析(MSA)。最初的研究主要关注单个子任务,却忽略了这些子任务之间相互关联的情感知识。...从广义上来说,情感分析包含了大量的子任务,如会话中的情感识别(ERC)、aspect-based的情感分析(ABSA)和多模态情感分析(MSA)。...最后,本文提出了一种新颖的「多模态情感分析框架UniSA」,其模型架构图如下所示:  如上图所示,作者采用生成式Transformer架构将情感分析的所有子任务统一为生成任务。...加权准确率(WA)用于基于方面的情感分析和评论分析。平均绝对误差(MAE)、7类别准确度(ACC-7)和2类别准确度(ACC-2)用于多模态情感分析。

    94830

    CENet及多模态情感计算实战

    早期的情感分析研究主要集中在分析单模态数据上,包括文本情感分析、图像情感分析、音频情感分析等。然而,人类的情感是通过人体的多种感官来传达的。因此,单模态情感分析忽略了人类情感的多维性。...相比之下,多模态情感分析通过结合文本、视觉和音频等多模态数据来推断一个人的情感状态。与单模态情感分析相比,多模态数据包含多样化的情感信息,具有更高的预测精度。...目前,多模态情感分析已被广泛应用于视频理解、人机交互、政治活动等领域。近年来,随着互联网和各种多媒体平台的快速发展,通过互联网表达情感的载体和方式也变得越来越多样化。...这导致了多媒体数据的快速增长,为多模态情感分析提供了大量的数据源。下图展示了多模态在情感计算任务中的优势。...CMU-MOSI: 它是一个多模态数据集,包括文本、视觉和声学模态。它来自Youtube上的93个电影评论视频。这些视频被剪辑成2199个片段。每个片段都标注了[-3,3]范围内的情感强度。

    59710

    基于多尺度自适应跨模态注意力融合(MACAF)的三模态情感分析-体感音乐多模态治疗

    基于深度学习的多模态情感分析是一个结合不同类型数据(如文本、图像、音频等)来检测和分析情感的领域。它利用深度学习技术来处理和融合多模态信息,从而提高情感分析的准确性和鲁棒性。...多模态情感分析概述多模态情感分析旨在通过结合多种模态的数据(如文本、音频、视频等),实现更准确和全面的情感识别。...传统的情感分析方法主要依赖于单一模态(通常是文本),而多模态情感分析则能够利用不同模态的信息互补,提高模型的性能。2....常见的多模态情感分析任务2.1 文本情感分析文本情感分析主要是根据文本内容识别情感倾向(如正面、负面、中性)。常见方法包括:基于词典的方法:利用情感词典对文本中的词语进行情感打分。...数据集常用的多模态情感分析数据集包括:CMU-MOSI:包含视频评论的多模态数据集,包括文本、音频和视频模态。IEMOCAP:包含多场景对话的音频和视频数据,用于情感识别和分析。

    42510

    【综述专栏】大型语言模型遇上文本中心的多模态情感分析

    本综述旨在:(1)全面回顾文本中心的多模态情感分析任务的最新研究,(2)探讨LLMs在文本中心的多模态情感分析中的潜力,概述其方法、优势和局限性,(3)总结基于LLM的多模态情感分析技术的应用场景,以及...在各种多模态情感分析任务中,利用LLMs和LMMs的方法有什么不同,它们各自的优势和局限性是什么? 多模态情感分析的未来应用场景是什么? 为此,我们首先介绍文本中心的多模态情感分析任务及其最新进展。...以文本为中心的多模态情感分析任务 以文本为中心的多模态情感分析主要包括图文情感分析和音频-图像-文本(视频)情感分析。...与基于文本的情感分类类似,以文本为中心的多模态情感分析也可以根据观点目标的粒度分为粗粒度多模态情感分析(如句子级别)和细粒度多模态情感分析(如方面级别)。...现有的细粒度多模态情感分析通常集中在图文配对数据上,包括多模态方面术语抽取(MATE)、多模态基于方面的情感分类(MASC)以及联合多模态方面-情感分析(JMASA)。

    1.6K10

    Interspeech 2019 | 基于多模态对齐的语音情感识别

    对于语音情感识别,当前的方法主要包括:1)直接通过语音信号特征;2)通过语音识别的文本特征;3)融合音频-文本的多模态特征。当前的方法忽视了音频和识别文本在时序空间的交互。...在本篇论文中,滴滴提出基于多模态对齐的语音情感识别的模型。在语音情感识别的公开数据集IEMOCAP取得了当前最好的性能。...基于多模态的语音情感识别的方法可以用于智能客服(如客服质检,机器人客服互动式语音应答),其中机器人客服质检主要是根据语音和识别文本对客服和用户的情绪进行分析,辅助质检,机器人客服互动式语音应答主要是根据语音和识别文本对进线用户的情绪进行分析...本文提出的多模态对齐的语音情感识别的模型,主要包括语音的编码器模块,语音识别文本的编码器模块,以及基于注意力机制的多模态融合网络模块,具体的模型结构图如上图。...在实验中,论文选择 1)直接通过语音信号特征 2)通过语音识别的文本特征 3)融合音频-文本的多模态特征这三类方法的对比,通过上图(Table 1),可以看出本论文的模型在加权精确度(WA)和非加权精确度

    3.4K20

    多模态情感分析与抑郁症检测:MMIM 模型的创新与应用全景

    情感分析应用:多模态情感分析与抑郁症检测技术进展 一、引言 近年来,社交媒体的蓬勃发展以及智能手机摄像头质量的显著提升,推动了多模态数据呈爆炸式增长,涵盖电影、短视频等多种形式。...在现实生活场景中,多模态数据主要源于视觉(图像)、听觉(语音)和转录文本三个渠道。这些数据往往蕴含着丰富的情感元素,而多模态情感分析(MSA)旨在挖掘并理解这些情感,已成为当下热门的研究领域。...二、研究背景 在过去数年中,多模态情感分析(MSA)和抑郁症检测(DD)日益受到广泛关注。在多模态情感分析领域,模型性能在很大程度上取决于合成嵌入的质量。...SIMS/SIMSV2:CH - SIMS 数据集是一个中文多模态情感分析数据集,为每种模态提供了详细标注。...(二)项目特点 多模态整合:MMIM 模型能够有效整合文本、图像和音频等多模态数据,充分发挥不同模态之间的相关性优势,显著提升情感分析的准确性与全面性。

    1K10

    从单模态到多模态AI Agent在情感计算中的深度学习方法演进

    从单模态到多模态AI Agent在情感计算中的深度学习方法演进一、引言情感分析(Sentiment Analysis)是自然语言处理(NLP)与计算机视觉(CV)中一项重要任务。...传统的情感分析主要依赖于文本数据,但在现实应用中,情感往往通过 语言、语音、表情、姿态 等多模态信号共同传达。因此,结合 多模态深度学习 的 AI Agent 在情感理解中具有广阔的前景。...本文将探讨AI Agent如何在多模态情感分析中建模,并通过深度学习方法实现高效的情感识别。...二、AI Agent与多模态情感分析框架2.1 AI Agent在情感分析中的角色AI Agent可被视为一个具备 感知、推理、交互 能力的智能体。...在多模态情感分析中,它的任务包括:感知:获取文本、语音、图像等多模态数据。推理:利用深度学习模型融合不同模态的特征。交互:根据情感结果进行反馈(如客服机器人根据用户情绪调整语气)。

    27510

    基于情感词典的情感分析_情感计算和情感分析

    dict_main.py 其中待处理数据放在chinese_weibo.txt中,读者可以自行更改文件目录,该文件中的数据格式如下图: 即用每一行代表一条语句,我们对每条语句进行情感分析,...所以头脑保持长久的沉默,不再分析判断。观察者和被观察者成为同一个人,观照者消融在观照中,成为观照本身。" emotion_level5 = "喜悦。当爱变得越来越无限的时候,它开始发展成为内在的喜悦。...single_review_senti_score = [] cuted_review = tp.cut_sentence(weibo_sent) # 句子切分,单独对每个句子进行分析...seg_sent: # 逐词分析 #print word if word in posdict: # 如果是积极情感词...score = single_review_sentiment_score(weibo_sent) print score """ # 分析test_data.txt 中的所有微博,返回一个列表,列表中元素为

    1.5K31

    情感词典文本情感分析_情感名词

    基于情感词典的文本情感分类 传统的基于情感词典的文本情感分类,是对人的记忆和判断思维的最简单的模拟,如上图。...情感词典分为四个部分:积极情感词典、消极情感词典、否定词典以及程度副词词典。...文本情感分类 基于情感词典的文本情感分类规则比较机械化。...对于文本情感分类也不例外,我们不仅仅可以记忆住大量的情感词语,同时我们还可以总结或推测出新的情感词语。比如,我们只知道“喜欢”和“爱”都具有积极情感倾向,那么我们会猜测“喜爱”也具有积极的情感色彩。...优化思路 经过上述分析,我们看到了文本情感分类的本质复杂性以及人脑进行分类的几个特征。而针对上述分析,我们提出如下几个改进措施。

    1.1K10

    从噪声中提取情感:中山大学与腾讯AI实验室基于元学习的多模态情感分析新方法

    多模态情感分析(Multimodal Sentiment Analysis, MSA)作为一种能够从语言、声学和视觉数据流中提取人类情感和观点的技术,近年来受到了广泛关注。...在智能助手和聊天机器人中,MSA可以帮助系统更好地理解用户的情感状态,从而提供更自然和人性化的交互体验。通过分析患者的多模态数据,MSA可以辅助心理健康专业人士评估患者的情感状态和心理健康状况。...在多模态情感分析任务中,通常只有多模态标签的注释,而缺乏单模态标签。这导致了多模态标签并不总是单模态标签的理想替代品,使用多模态标签来训练单模态信号可能会引入噪声,影响模型的性能。...团队成员在多模态情感分析、弱监督学习和元学习等领域具有丰富的研究经验。来自腾讯AI实验室的成员:Yu Zhao, Jianhua Yao。...团队成员在多模态学习、情感分析和深度学习等领域具有深厚的专业知识和研究成果。这个研究团队结合了学术界和工业界的优势,致力于在多模态情感分析领域取得突破性进展。如何学习大模型 AI ?

    19310

    【论文推荐】最新六篇情感分析相关论文—深度上下文、支持向量机、两级LSTM、多模态情感分析、软件工程、代码混合

    【导读】专知内容组整理了最近六篇情感分析(Sentiment Analysis)相关文章,为大家进行介绍,欢迎查看! 1....Sentiment Analysis of Comments on Rohingya Movement with Support Vector Machine(基于支持向量机的对罗兴亚运动评论的情感分析...e0f0d7a8efbc840dd91780fd0f424a26 3. ρ-hot Lexicon Embedding-based Two-level LSTM for Sentiment Analysis(基于ρ-hot词典Embedding的两级LSTM情感分析...Multimodal Sentiment Analysis: Addressing Key Issues and Setting up Baselines(多模态情感分析:解决关键问题和建立基准) 作者...A Benchmark Study on Sentiment Analysis for Software Engineering Research(对软件工程研究进行情感分析的基准研究) 作者:Nicole

    3K130

    单细胞分析:多模态 reference mapping (1)

    这个例子用来说明,在参考数据集的帮助下进行的有监督分析,是如何帮助我们识别那些仅通过无监督分析难以发现的细胞状态。...group.by = "celltype.l2", label = TRUE, label.size = 3, repel = TRUE) + NoLegend() img Mapping 为了演示与此多模式参考的映射...根据论文中的描述,本例中我们采用了预先计算的监督主成分分析(Supervised PCA,简称spca)变换。...我们建议对CITE-seq数据集采用监督主成分分析方法,并将在本指南的下一个部分展示如何执行这一变换。当然,您也可以选择使用传统的主成分分析(PCA)变换。...同样,如果我们通过差异表达分析来筛选调节性T细胞(Treg)的标记,我们能够识别出一组标准标记基因,包括RTKN2、CTLA4、FOXP3和IL2RA。

    39310

    单细胞分析:多模态 reference mapping (2)

    我们以之前使用加权最近邻分析(WNN)方法分析过的人类BMNC的CITE-seq参考集作为比对标准。...尽管我们也可以计算并应用传统的PCA投影,但在处理通过WNN分析构建的多模态参考数据时,我们更推荐使用监督式PCA(sPCA)。...spca.annoy.neighbors"]], file = "/brahms/shared/vignette-data/reftmp.idx") 查询数据集预处理 本节我们将展示如何将来自多位捐献者的骨髓样本与一个多模态骨髓参考集进行比对...hcabm40k.batches <- lapply(X = hcabm40k.batches, FUN = NormalizeData, verbose = FALSE) Mapping 接下来,我们在每位捐献者的数据集与多模态参考集之间确定锚点...需要注意的是,这些数据对象都已经通过参考集被整合到了一个共同的分析空间中。之后,我们就能够将这些数据的分析结果一并展现出来。

    30510

    EMNLP 2021-多模态Transformer真的多模态了吗?论多模态Transformer对跨模态的影响

    目前,我们很难准确地分析这些模型如何使用跨模式信息。 在本文中,作者引入了一种跨模态输入消融(cross-modal input ablation) 方法来量化预训练的模型学习使用跨模态信息的程度。...如果测试过程中,去除某个模态的信息,对最终结果影响很大,那这个模态在最终预测的时候就是有用的;否则这个模态就是没用的。 多模态模型在预测时使用由多模态输入触发的跨模态激活。...这是原始的多模态设置,因此,有效使用多模态信息的模型应该表现最好。 Object: 在这里,作者只删除与对齐的文本短语相对应的图像区域,该模型仍然可以使用周围的视觉上下文特征 。...在这里,作者分析这些因素如何影响视觉语言交互。...测试的模型显示了vision-for-language,而不是language-for-vision的结果,这一事实可能是多模态任务的积累,因为一些下游多模态任务需要强烈的 vision-for-language

    2.4K20

    腾讯发表多模态综述,什么是多模态大模型

    ,并且提供了现有主流的 26 个多模态大模型的简介,总结了提升多模态大模型性能的关键方法,多模态大模型脱胎于大模型的发展,传统的多模态模型面临着巨大的计算开销,而 LLMs 在大量训练后掌握了关于世界的...多模态大模型的整体架构可以被归类为如下图的五个部分,整个多模态大模型的训练可以被分为多模态理解与多模态生成两个步骤。...多模态理解包含多模态编码器,输入投影与大模型主干三个部分,而多模态生成则包含输出投影与多模态生成器两个部分,通常而言,在训练过程中,多模态的编码器、生成器与大模型的参数一般都固定不变,不用于训练,主要优化的重点将落在输入投影与输出投影之中...跨模态融合为核心部分,通过利用Transformer框架多头注意力中K、Q、V之间的运算关系实现情感状态的跨模态关注。...详细的运算过程可进一步分析本文的公式,或者结合Attention Is All You Need理解。3.

    4.7K12

    【情感分析】基于Aspect的情感分析模型总结(一)

    Ok,再开一个坑,接下去整一个稍微复杂点的,情感分析。...当然一般的情感分析也是一个分类任务,就可以参考之前文本分类的思路,我们这一系列要看的是「Aspect Based Sentiment Analysis (ABSA)」,关于这一任务的比赛也非常多,可见十分实用呀...可以粗暴翻译为基于方面的情感分析,本质就是对句子中不同对象可能会存在不同的情感倾向,例如:“I bought a new camera....Target-Connection LSTM 2.1 LSTM 第一种方法就是直接使用 NLP 中的万金油模型 LSTM,在该模型中,target words 是被忽略的,也就是说跟普通的对文本情感分析的做法没有区别...query=aspect embedding,整个 attention 的过程可以用数学表示为: 其中 r 表示各 hidden state 带权重后的表示,然后最终句子的表示为: 得到句子的表示后再进行情感分析

    7K61
    领券