大数据存储不是一类单独的产品,它有很多实现方式。EMC Isilon存储事业部总经理杨兰江概括说,大数据存储应该具有以下一些特性:海量数据存储能力,可轻松管理PB级乃至数十PB的存储容量;具有全局命名空间,所有应用可以看到统一的文件系统视图;支持标准接口,应用无需修改可直接运行,并提供API接口进行面向对象的管理;读写性能优异,聚合带宽高达数GB乃至数十GB;易于管理维护,无需中断业务即可轻松实现动态扩展;基于开放架构,可以运行于任何开放架构的硬件之上;具有多级数据冗余,支持硬件与软件冗余保护,数据具有高可靠性;采用多级存储备份,可灵活支持SSD、SAS、SATA和磁带库的统一管理。 通过与中国用户的接触,杨兰江认为,当前中国用户最迫切需要了解的是大数据存储有哪些分类,而在大数据应用方面面临的最大障碍就是如何在众多平台中找到适合自己的解决方案。 EMC针对不同的应用需求可以提供不同的解决方案:对于能源、媒体、生命科学、医疗影像、GIS、视频监控、HPC应用、某些归档应用等,EMC会首推以Isilon存储为核心的大数据存储解决方案;对于虚拟化以及具有很多小文件的应用,EMC将首推以VNX、XtremIO为核心的大数据存储解决方案;对于大数据分析一类的应用需求,EMC会综合考虑客户的具体需求,推荐Pivotal、Isilon等一体化的解决方案。在此,具体介绍一下EMC用于大数据的横向扩展NAS解决方案——EMC Isilon,其设计目标是简化对大数据存储基础架构的管理,为大数据提供灵活的可扩展平台,进一步提高大数据存储的效率,降低成本。 EMC Isilon存储解决方案主要包括三部分:EMC Isilon平台节点和加速器,可从单个文件系统进行大数据存储,从而服务于 I/O 密集型应用程序、存储和近线归档;EMC Isilon基础架构软件是一个强大的工具,可帮助用户在大数据环境中保护数据、控制成本并优化存储资源和系统性能;EMC Isilon OneFS操作系统可在集群中跨节点智能地整合文件系统、卷管理器和数据保护功能。 杨兰江表示,企业用户选择EMC Isilon的理由可以归纳为以下几点。第一,简化管理,增强易用性。与传统NAS相比,无论未来存储容量、性能增加到何种程度,EMC Isilon的安装、管理和扩展都会保持其简单性。第二,强大的可扩展性。EMC Isilon可以满足非结构化数据的存储和分析需求,单个文件系统和卷中每个集群的容量为18TB~15PB。第三,更高的处理效率,更低的成本。EMC Isilon在单个共享存储池中的利用率超过80%,而EMC Isilon SmartPools软件可进一步优化资源,提供自动存储分层,保证存储的高性能、经济性。第四,灵活的互操作性。EMC Isilon支持众多行业标准,简化工作流。它还提供了API可以向客户和ISV提供OneFS控制接口,提供Isilon集群的自动化、协调和资源调配能力。 EMC Isilon大数据存储解决方案已经在医疗、制造、高校和科研机构中有了许多成功应用。
企业数字化转型过程中,数据价值被显著放大,大数据应用成为不少企业探索的重点。 从技术上看,大数据业务由于数据体量大,且数据量很多时候呈急速膨胀状态;在进行大数据计算分析时,对资源的需求呈现浪涌式特征,又偶有突发性,因此通过上云充分发挥资源按需使用按需付费的优势,成为了不少企业在探索大数据应用时的常见模式。 这其中,企业在综合考量数据安全性、可扩展、可管理和成本效益等因素后,混合云部署的方式就成为了企业的主流选择。 近日,腾讯云存储高级产品经理贺永红在混合云主题论坛上发表演讲,详解了大数据应用上云的新
大数据无疑是目前IT领域的最受关注的热词之一。几乎凡事都要挂上点大数据,否则就显得你OUT了。相信大多数人都能顺口说出大数据的四个特点:容量大,多样化,速度快以及高价值。但随着人们对于大数据的逐渐了解
【编者按】如今,大数据俨然成为IT领域最受关注的热词之一。如果不想显得过于OUT,快来一起讨论大数据的价值和未来的服务方向吧。除了在分析领域、云技术方面的应用前景,Scale-out发展将成为大数据未
当传统数据存储与处理架构,在数据达到海量以后,产生了存储与性能瓶颈。这个时候大数据出现了,它帮忙解决了数据在海量规模情况下的的存储与计算问题。这是一个技术发展的必要途径,旧的技术无法适应新出现的场景,新技术就要诞生去进行解决。
大数据和云计算作为当代信息技术的两大核心驱动力,正在以前所未有的速度改变着我们的生活、工作和思维方式。它们不仅为各行各业的创新提供了强大的技术支持,更是推动了整个社会的数字化转型。
政务是个大市场,阿里、腾讯、电信、华为都在赔本赚吆喝。本文作者宇同学是资深从业人士,研发总监,他会写一系列文章来阐述政务云全景。 前面七篇分别深入阐述: 政务大数据点本质:《 浅谈政务大数据的本质》 政务大数据的全景图:《政务大数据的全景图》 政务大数据的上下文范围:《政务大数据的上下文范围》 政务大数据的概念模型:《政务大数据的概念模型》 政务大数据的逻辑模型:《政务大数据的逻辑模型》 政务大数据的物理模型:《政务大数据的物理模型》 政务大数据的部署结构:《政务大数据的部署结构》
根据IDC研究报告,未来10年全球数据量将以40%多的增长速度呈直线上升趋势,2020年,全球的数据量将达到35ZB(35,000,000PB),是2010年的40倍。换句通俗的话说,也就是每过1分钟,全世界就有1820TB的新数据产生。
大数据(Big Data),指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
最近的大数据是非常的火,如何理解大数据与DATABASE 不同的地方,今天想瞎说八道一下,个人对大数据和数据库之间不同的一些想法。
言必称大数据的时代,让我们多少有些“审美疲劳”。但如果严格按照大数据的定义来判断,相信大多数公司是根本不存在大数据问题的。你也许有很多数据,但那并不意味着就是大数据。数据库即服务公司MongoHQ的@Codepope最近在博客上探讨了这个问题,以及为何我们要存储这么多的数据,但无法从中获取相应的价值。 大数据实际上是范围极广、数量极大的,超乎你的想象。你也许认为维基百科的数据很大,但它也只是冰山一角而已。人们往往认为“很多的”数据就是所谓的“大”,因此他们无时无刻不在与大数据打交道。这种想法是不对
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中科院计算所与CSDN共同协办的2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014)将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据
任何技术的出现,在前期都是理论先行,但此时没有应用场景,不会大规模的推开,那技术都得不到深度的发展。
现在的社会是一个科技与信息高速发展的社会,人们之间的交流越来越密切,生活也越来越方便,大数据技术不知不觉地渗入人们生活的方方面面。人不仅生产大数据,同是也在使用大数据
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和展现的有力武器。 一、大数据接入 1、大数据接入 已有数据接入、实时数据接入、文件数据接入、消息记录数据接入、文字数据接入、图片数据接入、视屏数据接入 2、大数据接入技术 Kafka、ActiveMQ、ZeroMQ、Flume、Sqoop、Socket(Mina、Netty)、ftp/sftp 二、大数据存储 1、大数据存储 结构化数据存储、半结构化数据存储、非结构化数据存储 2、
大数据已经火了很长很长时间了,从最开始是个公司都说自己公司的数据量很大,我们在搞大数据。到现在大数据真的已经非常成熟并且已经在逐渐的影响我们的生产生活。你可能听过支付宝的金融大数据,滴滴的出行大数据以及其他的诸如气象大数据等等,我们每个人都是数据的制造者,以后又将享受大数据技术所带来的生活的便利。
政务是个大市场,阿里、腾讯、电信、华为都在赔本赚吆喝。本文作者宇同学是资深从业人士,研发总监,他会写一系列文章来阐述政务云全景。 前面三篇分别深入阐述: 政务大数据点本质:《 浅谈政务大数据的本质》 政务大数据的全景图:《政务大数据的全景图》 政务大数据的上下文范围:《政务大数据的上下文范围》 政务大数据的概念模型:《政务大数据的概念模型》 政务大数据的逻辑模型:《政务大数据的逻辑模型》 反响非常好,本篇接上一篇讲讲政务大数据的物理模型。希望大家会喜欢! 后
最近有不少质疑大数据的声音,这些质疑有一定的道理,但结论有些以偏概全,应该具体问题具体分析。对大数据的疑问和抗拒往往是因为对其不了解,需要真正了解之后才能得出比较客观的结论。 大数据是一个比较宽泛的概念,它包含大数据存储和大数据计算,其中大数据计算可大致分为计算逻辑相对简单的大数据统计,以及计算逻辑相对复杂的大数据预测。下面分别就以上三个领域简要分析一下:第一,大数据存储解决了大数据技术中的首要问题,即海量数据首先要能保存下来,才能有后续的处理。因此大数据存储的重要性是毫无疑问的。第二,大数据统计是对海量
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。 大数据处理关键技术一般包括:大数据采集、大
百科是这样定义的:精准医学(Precision Medicine)是以个体化医疗为基础、随着基因组测序技术快速进步以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。
<数据猿导读> 无论是为促销产品还是作为战略目标,大数据已然成为很多公司和机构过度使用的术语。笔者认为,数据基本就是两类,一类是人类轨迹产生的数据,另一类机器自动产生的数据。这两类数据构成了我们今天的
大数据已经逐渐普及,大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
大数据测试,在当前的测试领域是一个相对比较新的领域,而且难度也非常大。大数据测试从某种意义来说和人工智能测试有点类似,测试数据的量比较大,而test oracle又不像传统测试那样容易定义。另外大数据测试人员还必须懂得大数据的专业工具比如hadoop、HDFS、HiveQL、 Pig等,同时最好也需要懂python等语言,对测试人员的综合要求非常高。
随着大数据概念的提出,云计算中的分布式计算技术开始更多地被列入大数据技术,而人们提到云计算时,更多指的是底层基础IT资源的整合优化以及以服务的方式提供IT资源的商业模(如Iaas、PaaS、SaaS)。
近几年,"大数据"这个词以烈火燎原之势,在互联网领域迅速的扎根生长。尤其是"大数据"时代的到来,刺激了各大行业发展,也增加了很多相关岗位。许多人了解情况之后,毅然决定学习大数据技术,进入相关行业,而有的人还在观望,不知道未来大数据前景怎么样?今日博主有幸在1024"程序员节"上,为大家(更多是有一定编程能力的大数据学者)科普一下与大数据相关的知识!
大数据技术是一种新一代技术和构架,大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,大数据技术已经运用到各个领域
导 读: 大数据听得耳朵起茧了,但真正能深入了解吗?不一定。在此特分享三个主题,分别是:不一样的大数据框架、不一样的大数据采集平台、神一样的数据产品。整编成一篇文章,与大家一起分享! 一、数据从哪里来
首先,在学习大数据之前,需要了解什么是大数据?它是如何诞生的?它有哪些应用场景?只有了解了这些,才能窥视大数据的技术全貌。一个技术的诞生,是顺应时代的,是用于解决某些问题的,它的发展也一定是有内在逻辑的。接下来,一起去看看。
为了方便大家梳理清楚大数据学习路线,本文从以下四个方面来介绍大数据技术: 大数据技术栈 大数据发展史 大数据应用 大数据开发岗位
英国牛津大学教授维克托·迈尔-舍恩伯格在其所撰写的《大数据时代》中表述,大数据时代是“已经发生的未来”,而在这个已经发生的未来里,没有旁观者。
对于很多人来说,当他第一次听到“大数据”这个词,会自然而然从字面上去理解——认为大数据就是大量的数据,大数据技术就是大量数据的存储技术。
最近在看关于大数据、数据仓库 、数据架构的《数据架构:大数据、数据仓库以及Data Vault》一书,关于大数据有些思考,结合FineBI的Spider引擎,可看看Spider引擎对于大数据的阐释,以及在大数据平台架构中,可以处于什么样的位置。
什么是大数据?大数据有什么特点?大数据与传统的数据有什么关系?大数据和我们有什么关系?虽然很多书籍上直接说明了大数据的概念和特点,但是根据个人的体会,如果我们先了解数据的概念和特点,那么我们将会更加容易理解大数据。
大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集、整理、传输、存储、安全、分析、呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网、云计算也都有密切的联系。
(一)大数据对传统数据处理技术体系提出挑战 大数据来源于互联网、企业系统和物联网等信息系统,经过大数据处理系统的分析挖掘,产生新的知识用以支撑决策或业务的自动智能化运转。从数据在信息系统中的生命周期看,大数据从数据源经过分析挖掘到最终获得价值一般需要经过5个主要环节,包括数据准备、数据存储与管理、计算处理、数据分析和知识展现,技术体系如图1所示。每个环节都面临不同程度的技术上的挑战。 数据准备环节:在进行存储和处理之前,需要对数据进行清洗、整理,传统数据处理体系中称为ETL(Extractin
言必称大数据的时代,让我们多少有些“审美疲劳”。但如果严格按照大数据的定义来判断,相信大多数公司是根本不存在大数据问题的。你也许有很多数据,但那并不意味着就是大数据。数据库即服务公司MongoHQ的@Codepope最近在博客上探讨了这个问题,以及为何我们要存储这么多的数据,但无法从中获取相应的价值。 大数据实际上是范围极广、数量极大的,超乎你的想象。你也许认为维基百科的数据很大,但它也只是冰山一角而已。人们往往认为“很多的”数据就是所谓的“大”,因此他们无时无刻不在与大数据打交道。这种想法是不对的,我们从
作者 | 蔡芳芳 采访嘉宾 | 陈龙 2020 年 9 月,主打云数据仓库产品的硅谷独角兽 Snowflake 正式登陆纳斯达克,首日 IPO 筹资高达 33.6 亿美元,是有记录以来金额最大的软件 IPO,突破了 Uber 2019 年 5 月上市创下的最大规模纪录。 如今,大数据技术早已进入普及期,数据仓库 / 分析领域更是巨头林立,既有传统厂商 Oracle、Teradata,也有开源软件 Hadoop,还有云厂商 AWS Redshift、Google Bigquery,在这样一个竞争环境下
目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。那么,到底什么是大数据呢?
摘要 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
数据正在呈几何级数增长,来自社交媒体(微信、微博)以及传感器设备的非结构化数据受到了越来越多的关注,而与传统企业交易系统的结构化数据一起,它们将有可能带来新一轮的产业变革。机器学习,自然语言处理,舆情分析等词汇几乎每天都会出现在媒体的报道当中,然而真正讲它们大规模投入应用的企业却少之又少。 如今,企业CIO们几乎人人都在讨论大数据,许多人认为大数据就是搭一个Hadoop集群,把所有的数据全部存进去,再通过各种各样的API调用进行分析。然而答案并不是这么简单,大数据与IT方方面面
当前, 大数据已成为继物联网、云计算之后的信息技术产业中最受关注的热点领域之一。随着大数据从概念渗透转向应用发展,大数据产业正处在蓬勃发展的孕育期与机遇期。大数据技术将在开源环境下不断提升,大数据产业
01 中国大数据产业 发展现状与前景预测 1. 中国大数据产业发展现状分析 大数据产业链建设情况 目前,IT产业在发展过程中已经形成了一些层次分布,有做服务器和底层系统的,有做软件的,有做应用的,大数据也需要在原有的架构上加以发展。原来做基础设施的企业,如联想、华为,也要向大数据转型,提供低成本、低能耗的大型存储器,这是大数据产业的基础。中间层是类似Hadoop、MapReduce的数据分析软件,原有的软件产业也要转型,由卖软件转为以数据为中心。再往上就是百度、腾讯、阿里巴巴等大数据应用服务公司,需要增加数
4. Bloom Filter(BF)是一种空间效率很高的随机数据结构,下面描述错误的是__
胖子哥是我网名,叫了很多年的网名,网名的来历与自己的沧桑和身材有关,不知是IT改变了我,显得苍老,还是我本就苍老,顺应了IT行业的需要。25岁那面,曾被跟我一样高的漂亮美眉叫叔叔,从此再也不敢打小姑娘的注意,走上了重口味热爱阿姨级别女性的不归路;曾被三十五、六岁的同事阿姨说苍老:看你也就三十五六吧,那年我25;周一的时候,还有一个60后的同事问及我的年龄,他很含蓄的,明显带着保留的口吻问我:你是75年的吧?因为他一直认为和我一般大。然后...然后泪奔。关于体型方面也是个悲剧、三围相等,体重大于身高的角色,算是已经胖出了一定层次,每次听到别人叫我胖子,就感觉小小的自尊多少受到了伤害,然后就给自己在后面加了一个哥子,算是给自己遮半张脸吧。闲话就聊到这里,还是继续胖子哥的大数据之路吧,这次要谈的还是数据仓库。
2020 年 9 月,主打云数据仓库产品的硅谷独角兽 Snowflake 正式登陆纳斯达克,首日 IPO 筹资高达 33.6 亿美元,是有记录以来金额最大的软件 IPO,突破了 Uber 2019 年 5 月上市创下的最大规模纪录。 如今,大数据技术早已进入普及期,数据仓库 / 分析领域更是巨头林立,既有传统厂商 Oracle、Teradata,也有开源软件 Hadoop,还有云厂商 AWS Redshift、Google Bigquery,在这样一个竞争环境下,成立于 2012 年的 Snowflake 能脱颖而出实属不易。那么,Snowflake 在数仓技术方面有哪些独到之处?其成功的背后又有哪些技术原因和趋势值得关注?
参加活动赢取话费和一个月免费会员 点击底部阅读原文,参加PPV课玩转可视化图表,赢取话费和PPV课一个月免费会员,精品课程免费看! 目录: 什么是大数据 Hadoop介绍-HDFS、MR、Hbase
大数据架构是用于摄取和处理大量数据(通常称为“大数据”)的总体系统,因此可以针对业务目的进行分析。该架构可视为基于组织业务需求的大数据解决方案的蓝图。
经过多年来的高速发展,大数据相关的数据采集、存储、分析、可视化等多个基础性技术领域已经取得较大的突破,形成了实用性强、稳定度高的技术能力,大数据整体技术体系已初步构建完成,未来大数据技术的发展方向将主要集中在非结构化数据的价值提取方面。 当前,大数据已成为继物联网、云计算之后的信息技术产业中最受关注的热点领域之一。随着大数据从概念渗透转向应用发展,大数据产业正处在蓬勃发展的孕育期与机遇期。大数据技术将在开源环境下不断提升,大数据产业将依赖快速聚集的社会资源,在数据和应用驱动的创新下,不断丰富商业模式,构建
领取专属 10元无门槛券
手把手带您无忧上云