首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
您找到你想要的搜索结果了吗?
是的
没有找到

如何对非结构化文本数据进行特征工程操作?这里有妙招!

文本数据通常是由表示单词、句子,或者段落的文本流组成。由于文本数据非结构化(并不是整齐的格式化的数据表格)的特征和充满噪声的本质,很难直接将机器学习方法应用在原始文本数据中。在本文中,我们将通过实践的方法,探索从文本数据提取出有意义的特征的一些普遍且有效的策略,提取出的特征极易用来构建机器学习或深度学习模型。 研究动机 想要构建性能优良的机器学习模型,特征工程必不可少。有时候,可能只需要一个优秀的特征,你就能赢得 Kaggle 挑战赛的胜利!对于非结构化的文本数据来说,特征工程更加重要,因为我们需要将文

06

基于协同过滤的推荐引擎(理论部分)

记得原来和朋友猜测过网易云的推荐是怎么实现的,大概的猜测有两种:一种是看你听过的和收藏过的音乐,再看和你一样听过这些音乐的人他们喜欢听什么音乐,把他喜欢的你没听过的音乐推荐给你;另一种是看他听过的音乐或者收藏的音乐中大部分是什么类型,然后把那个类型的音乐推荐给他。当然这些都只是随便猜测。但是能发现一个问题,第二种想法很依赖于推荐的东西本身的属性,比如一个音乐要打几个类型的标签,属性的粒度会对推荐的准确性产生较大影响。今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西

09

基于协同过滤的推荐引擎(理论部分)

记得原来和朋友猜测过网易云的推荐是怎么实现的,大概的猜测有两种:一种是看你听过的和收藏过的音乐,再看和你一样听过这些音乐的人他们喜欢听什么音乐,把他喜欢的你没听过的音乐推荐给你;另一种是看他听过的音乐或者收藏的音乐中大部分是什么类型,然后把那个类型的音乐推荐给他。当然这些都只是随便猜测。但是能发现一个问题,第二种想法很依赖于推荐的东西本身的属性,比如一个音乐要打几个类型的标签,属性的粒度会对推荐的准确性产生较大影响。今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西

05

预训练句子表征——【EMNLP 2019】Sentence-BERT

在许多NLP任务(特别是在文本语义匹、文本向量检索等)需要训练优质的句子表示向量,模型通过计算两个句子编码后的Embedding在表示空间的相似度来衡量这两个句子语义上的相关程度,从而决定其匹配分数。尽管基于BERT在诸多NLP任务上取得了不错的性能,但其自身导出的句向量(【CLS】输出的向量、对所有输出字词token向量求平均)质量较低。由于BERT输出token向量预训练中,后面接的的分类的任务。所以其实输出token向量并不适合作为生成句子表示。美团一篇论文中提到,发现以这种方式编码,句子都倾向于编码到一个较小的空间区域内,这使得大多数的句子对都具有较高的相似度分数,即使是那些语义上完全无关的句子对,并将此称为BERT句子表示的“坍缩(Collapse)”现象:

02

【EMNLP 2019】Sentence-BERT

在许多NLP任务(特别是在文本语义匹、文本向量检索等)需要训练优质的句子表示向量,模型通过计算两个句子编码后的Embedding在表示空间的相似度来衡量这两个句子语义上的相关程度,从而决定其匹配分数。尽管基于BERT在诸多NLP任务上取得了不错的性能,但其自身导出的句向量(【CLS】输出的向量、对所有输出字词token向量求平均)质量较低。由于BERT输出token向量预训练中,后面接的的分类的任务。所以其实输出token向量并不适合作为生成句子表示。美团一篇论文中提到,发现以这种方式编码,句子都倾向于编码到一个较小的空间区域内,这使得大多数的句子对都具有较高的相似度分数,即使是那些语义上完全无关的句子对,并将此称为BERT句子表示的“坍缩(Collapse)”现象:

02
领券