(https://data.world/dataquest/mlb-game-logs) 我们从导入数据,并输出前5行开始: 我们将一些重要的字段列在下面: date - 比赛日期 v_name -...由此我们可以进一步了解我们应该如何减少内存占用,下面我们来看一看pandas如何在内存中存储数据。...选理解子类(Subtypes) 刚才我们提到,pandas在底层将数值型数据表示成Numpy数组,并在内存中连续存储。这种存储方式消耗较少的空间,并允许我们较快速地访问数据。...pandas中的许多数据类型具有多个子类型,它们可以使用较少的字节去表示不同数据,比如,float型就有float16、float32和float64这些子类型。...这意味着我们可以用这种子类型去表示从-128到127(包括0)的数值。
,并且 Pandas 使用轴标签来表示行和列。...对象列(object columns)主要用于存储字符串,包含混合数据类型。为了更好地了解怎样减少内存的使用量,让我们看看 Pandas 是如何将数据存储在内存中的。...数据框的内部表示 在底层,Pandas 按照数据类型将列分成不同的块(blocks)。这是 Pandas 如何存储数据框前十二列的预览。 你会注意到这些数据块不会保留对列名的引用。...这意味着,我们可以使用这种子类型来表示从 -128 到 127 (包括0)的值。...让我们创建一个原始数据框的副本,然后分配这些优化后的数字列代替原始数据,并查看现在的内存使用情况。 虽然我们大大减少了数字列的内存使用量,但是从整体来看,我们只是将数据框的内存使用量降低了 7%。
在这篇文章中,我们将了解 pandas 的内存使用,以及如何只需通过为列选择合适的数据类型就能将 dataframe 的内存占用减少近 90%。...让我们首先导入数据,并看看其中的前五行: import pandas as pd gl = pd.read_csv('game_logs.csv') gl.head() 下面我们总结了一些重要的列,但如果你想了解所有的列...为了更好地理解如何减少内存用量,让我们看看 pandas 是如何将数据存储在内存中的。...这意味着我们可以使用这个子类型来表示从 -128 到 127(包括 0)的所有整数值。 我们可以使用 numpy.iinfo 类来验证每个整型数子类型的最大值和最小值。...这两种类型都有一样的存储能力,但其中一个只保存 0 和正数。无符号整型让我们可以更有效地处理只有正数值的列。
在这篇文章中,我们将了解 pandas 的内存使用,以及如何只需通过为列选择合适的数据类型就能将 dataframe 的内存占用减少近 90%。 ?...让我们首先导入数据,并看看其中的前五行: import pandas as pd gl = pd.read_csv('game_logs.csv') gl.head() 下面我们总结了一些重要的列,但如果你想了解所有的列...为了更好地理解如何减少内存用量,让我们看看 pandas 是如何将数据存储在内存中的。...一个 int8 类型的值使用 1 个字节的存储空间,可以表示 256(2^8)个二进制数。这意味着我们可以使用这个子类型来表示从 -128 到 127(包括 0)的所有整数值。...这两种类型都有一样的存储能力,但其中一个只保存 0 和正数。无符号整型让我们可以更有效地处理只有正数值的列。
在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...我们将使用 =IF(A2 的公式,将其拖到新存储列中的所有单元格。 使用 numpy 中的 where 方法可以完成 Pandas 中的相同操作。...; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1.
为了解决这些问题,Pandas又有两种方括号的 "口味": .loc[]总是使用标签并包括区间的两端; .iloc[]总是使用位置索引,并排除了右端。...对于非数字标签来说,这有点显而易见:为什么(以及如何)Pandas在删除一行后,会重新标记所有后续的行?对于数字标签,答案就有点复杂了。...你逐一进行了几次查询,每次都缩小了搜索范围,但只看了列的一个子集,因为同时看到所有的一百个字段是不现实的。现在你已经找到了目标行,想看到原始表中关于它们的所有信息。一个数字索引可以帮助你立即得到它。....> >>> len(df.compare(df)) == 0 True 添加、插入、删除 尽管系列对象应该是大小不可变的,但有可能在原地追加、插入和删除元素,但所有这些操作都是: 缓慢,因为它们需要为整个对象重新分配内存并更新索引...字符串和正则表达式 几乎所有的Python字符串方法在Pandas中都有一个矢量的版本: count, upper, replace 当这样的操作返回多个值时,有几个选项来决定如何使用它们: split
对于数据开发工程师或分析师而言,SQL 语言是标准的数据查询工具。本文提供了一系列的示例,说明如何使用pandas执行各种SQL操作。...SQL VS Pandas SELECT(数据选择) 在SQL中,选择是使用逗号分隔的列列表(或*来选择所有列): ? 在Pandas中,选择不但可根据列名称选取,还可以根据列所在的位置选取。...宝器带你画重点: subset,为选定的列做数据去重,默认为所有列; keep,可选择{'first', 'last', False},保留重复元素中的第一个、最后一个,或全部删除; inplace ,...这是因为count()将函数应用于每个列,返回每个列中的非空记录的数量。具体如下: ? 还可以同时应用多个函数。例如,假设我们想要查看每个星期中每天的小费金额有什么不同。 SQL: ?...总结: 本文从Pandas里面基本数据结构Dataframe的固定属性开始介绍,对比了做数据分析过程中的一些常用SQL语句的Pandas实现。
在 Stata 中,数据集的行基本上是无标签的,除了可以使用_n访问的隐式整数索引。 在 pandas 中,如果未指定索引,则默认也使用整数索引(第一行=0,第二行=1,依此类推)。...相比之下,Python 必须已经将两个DataFrames都加载到内存中。 默认情况下,Stata 执行外连接,合并后两个数据集中的所有观测值都保留在内存中。...可以用于按一个或多个关键变量分组并计算数值列的聚合。...新列可以以相同的方式分配。DataFrame.drop() 方法从 DataFrame 中删除列。...相比之下,Python 必须已经将两个DataFrames都加载到内存中。 默认情况下,Stata 执行外连接,合并后两个数据集的所有观测值都保留在内存中。
因此,我们将探讨如何使用Python从数据表中删除重复项,它超级简单、快速、灵活。 图1 准备用于演示的数据框架 可以到完美Excel社群下载示例Excel电子表格以便于进行后续操作。...第3行和第4行包含相同的用户名,但国家和城市不同。 删除重复值 根据你试图实现的目标,我们可以使用不同的方法删除重复项。最常见的两种情况是:从整个表中删除重复项或从列中查找唯一值。...我们将了解如何使用不同的技术处理这两种情况。 从整个表中删除重复项 Python提供了一个方法.drop_duplicates()可以帮助我们轻松删除重复项!...此方法包含以下参数: subset:引用列标题,如果只考虑特定列以查找重复值,则使用此方法,默认为所有列。 keep:保留哪些重复值。’...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个的重复值。现在pandas将在“用户姓名”列中检查重复项,并相应地删除它们。
在开始做数据清洗前,需要对Numpy和Pandas库有基本的理解。 数据清洗 数据清洗名如其意,其过程为标识并修正数据集中不准确的记录,识别数据中不可靠或干扰部分,然后重建或移除这些数据。...下面我将讨论这些不一致的数据: 数据缺失 列值统一处理 删除数据中不需要的字符串 数据缺失 数据缺失原因? 在填写问卷时,人们往往未填全所有必填信息,或用错数据类型。...问卷结果中缺失的数据在使用前必须做相应的解释及处理。 下面,我们将看到一份关于不同层次学生入学考试的数据集,包括得分、学校偏好和其他细节。 通常,我们先导入Pandas并读入数据集。...删除缺值项 如果你只是想简单地排除缺值项,可以用dropna函数配合axis参数进行。缺省情况下,axis=0表示沿横轴(行)删除含有有非数值型字段的任何行。...上面的屏幕截图显示了如何从字符串中删除一些字符 soupsubcategory是唯一一个数据类型为'object'的列,所以我们选择了select_dtypes(['object']),我们正在使用
本章主要为大家介绍如何从多个渠道中获取数据,为预处理做好数据准备。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...how:表示删除缺失值的方式。 thresh:表示保留至少有N个非NaN值的行或列。 subset:表示删除指定列的缺失值。 inplace:表示是否操作原数据。...常用的合并数据的函数包括: 3.2.3 主键合并数据merge 主键合并数据类似于关系型数据库的连接操作,主要通过指定一个或多个键将两组数据进行连接,通常以两组数据中重复的列索引为合并键。
每次爬虫获取的数据都是需要处理下的。 所以这一次简单讲一下Pandas的用法,以便以后能更好的使用。 数据整合是对数据进行行列选择、创建、删除等操作。...可以直接用列名选择,也可以通过ix、iloc、loc方法进行选择行、列。 ix方法可以使用数值或者字符作为索引来选择行、列。 iloc则只能使用数值作为索引来选择行、列。...选择多列。ix、iloc、loc方法都可使用。 只不过ix和loc方法,行索引是前后都包括的,而列索引则是前包后不包(与列表索引一致)。 iloc方法则和列表索引一致,前包后不包。...删除列。使用数据框的方法drop。...03 横向连接 Pandas提供了merge方法来完成各种表的横向连接操作。其中包括内连接、外连接。 内连接,根据公共字段保留两表共有的信息。
创建一个DataFrame 用已经存储在内存中的数据构建一个DataFrame竟是如此的超凡脱俗,以至于它可以转换你输入的任何类型的数据: 第一种情况,没有行标签,Pandas用连续的整数来标注行。...所有的算术运算都是根据行和列的标签来排列的: 在DataFrames和Series的混合操作中,Series的行为(和广播)就像一个行-向量,并相应地被对齐: 可能是为了与列表和一维NumPy向量保持一致...垂直stacking 这可能是将两个或多个DataFrame合并为一个的最简单的方法:你从第一个DataFrame中提取行,并将第二个DataFrame中的行附加到底部。...即使不关心索引,也要尽量避免在其中有重复的值: 要么使用reset_index=True参数 调用df.reset_index(drop=True)来重新索引从0到len(df)-1的行、 使用keys...它首先丢弃在索引中的内容;然后它进行连接;最后,它将结果从0到n-1重新编号。
在SAS例子中,我们使用Data Step ARRAYs 类同于 Series。 以创建一个含随机值的Series 开始: ? 注意:索引从0开始。...注意DataFrame的默认索引(从0增加到9)。这类似于SAS中的自动变量n。随后,我们使用DataFram中的其它列作为索引说明这。...也要注意Python如何为数组选择浮点数(或向上转型)。 ? 并不是所有使用NaN的算数运算的结果是NaN。 ? 对比上面单元格中的Python程序,使用SAS计算数组元素的平均值如下。...解决缺失数据分析的典型SAS编程方法是,编写一个程序使用计数器变量遍历所有列,并使用IF/THEN测试缺失值。 这可以沿着下面的输出单元格中的示例行。...显然,这会丢弃大量的“好”数据。thresh参数允许您指定要为行或列保留的最小非空值。在这种情况下,行"d"被删除,因为它只包含3个非空值。 ? ? 可以插入或替换缺失值,而不是删除行和列。.
(str):时间提取字符串 其中,pd.to_datetime可接受单个或多个日期数值,具体类型包括数值型、字符串、数组或pd.series等序列,其中字符串日期格式几乎包含了所有可能的组成形式,例如...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...实际上,这是pandas行索引访问的通用策略,即模糊匹配。...关于pandas时间序列的重采样,再补充两点:1.重采样函数可以和groupby分组聚合函数组合使用,可实现更为精细的功能,具体可参考Pandas中groupby的这些用法你都知道吗一文;2.重采样过程中...值得指出,这里的滑动取值可以这样理解:periods参数为正数时,可以想象成索引列不动,数据列向后滑动;反之,periods参数为负数时,索引列不动,数据列向前滑动。
从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...在使用这个函数的时候,你需要先指定具体的删除方向,axis=0 对应的是行 row,而 axis=1 对应的是列 column 。 删除 'Birth_year' 列: ? 删除 'd' 行: ?...比如,我们希望在下面这个表格中筛选出 'W'>0 的行: ? 如果要进一步筛选,只看 'X' 列中 'W'>0 的数据: ?...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...请注意,如果你没有指定 axis 参数,默认是删除行。 删除列: ? 类似的,如果你使用 .fillna() 方法,Pandas 将对这个 DataFrame 里所有的空值位置填上你指定的默认值。
以下是一个使用Pandas库实现的示例代码,展示了如何处理NaN值并转换为整数:pythonCopy codeimport pandas as pd# 创建包含学生成绩的数据集data = {'Name...然后,使用mean函数计算了每个学生的平均成绩,并将结果保存在Average列中。...例如,进行0除以0的操作会得到NaN,或者对一个非数值类型的变量进行数值运算也会得到NaN。在Python中,NaN表示为浮点数表示法nan。 NaN的特点包括:NaN不等于任何数,包括自己。...处理NaN值是数据清洗与准备的重要环节之一,常见的处理方法包括填充(用合适的值替换NaN)、删除(从数据集中删除包含NaN的行或列)等。整数整数是数学中的一种基本数据类型,用于表示不带小数部分的数字。...在编程中,整数是一种常用的数据类型,通常用于表示不需要小数精度的数值。整数可以是正数、负数或零。 整数的特点包括:整数没有小数部分,总是被存储为整数值。整数之间可以进行常见的数学运算,如加减乘除等。
访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...这种探索通常涉及对DataFrame对象的结构进行修改,以删除不必要的数据,更改现有数据的格式或从其他行或列中的数据创建派生数据。 这些章节将演示如何执行这些强大而重要的操作。...连接行 可以使用pd.concat()函数并通过指定axis=0将来自多个DataFrame对象的行彼此连接。...-2e/img/00223.jpeg)] 使用切片删除行 切片可用于从数据帧中删除记录。...此外,我们看到了如何替换特定行和列中的数据。 在下一章中,我们将更详细地研究索引的使用,以便能够有效地从 pandas 对象内检索数据。
如果仔细观察,您会发现步骤 3 的输出缺少步骤 2 的所有对象列。其原因是对象列中缺少值,而 pandas 不知道如何处理字符串值与缺失值。 它会静默删除无法为其计算最小值的所有列。...步骤 3 中的dropna方法具有how参数,该参数默认为字符串any,但也可以更改为all。 设置为any时,它将删除包含一个或多个缺失值的行。 设置为all时,它仅删除缺少所有值的行。...Pandas 还有 NumPy 中不提供的其他分类数据类型。 当转换为category时,Pandas 内部会创建从整数到每个唯一字符串值的映射。 因此,每个字符串仅需要在内存中保留一次。.../img/00087.jpeg)] 另见 Pandas query方法的官方文档 使用where方法保留序列 布尔索引必须通过删除不符合条件的所有行来过滤数据集。...步骤 3 使用此掩码的数据帧删除包含所有缺失值的行。 步骤 4 显示了如何使用布尔索引执行相同的过程。 在数据分析过程中,持续验证结果非常重要。 检查序列和数据帧的相等性是一种非常通用的验证方法。
领取专属 10元无门槛券
手把手带您无忧上云