首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何从3D点的列表中获取体素数组,这些点在体素化体积中构成一条线?

从3D点的列表中获取体素数组,这些点在体素化体积中构成一条线的过程可以通过以下步骤实现:

  1. 首先,需要明确什么是3D点和体素化体积。3D点是在三维空间中具有坐标的点,用于表示物体的位置。体素化体积是将三维空间划分为小立方体(体素),并将每个立方体与相应的属性关联起来的过程。
  2. 确定体素化体积的大小和分辨率。根据需要,确定体素化体积的大小和分辨率,即确定立方体的数量和大小。
  3. 创建一个空的体素数组。根据确定的体素化体积大小,创建一个空的体素数组,用于存储每个立方体的属性。
  4. 遍历3D点列表。对于给定的3D点列表,遍历每个点。
  5. 将每个点映射到体素数组中的相应位置。根据每个3D点的坐标,将其映射到体素数组中的相应位置。可以使用坐标转换公式将三维坐标转换为体素数组中的索引。
  6. 在体素数组中设置相应的属性。根据需要,在体素数组中设置与每个点相关联的属性。这可以是一个布尔值,表示该立方体是否被占据,或者是其他任何与该点相关的属性。
  7. 重复步骤4-6,直到遍历完所有的3D点。
  8. 返回体素数组。遍历完所有的3D点后,返回生成的体素数组作为结果。

这个过程可以应用于许多场景,例如计算机图形学中的体绘制、医学图像处理中的体数据分析等。

腾讯云提供了一系列与云计算相关的产品,其中包括与3D点和体素化相关的产品。具体推荐的产品和产品介绍链接地址如下:

  1. 腾讯云云服务器(CVM):提供弹性计算能力,可用于处理大规模的计算任务。产品介绍链接:https://cloud.tencent.com/product/cvm
  2. 腾讯云云数据库MySQL版:提供高性能、可扩展的关系型数据库服务,可用于存储和管理与体素化相关的数据。产品介绍链接:https://cloud.tencent.com/product/cdb_mysql
  3. 腾讯云人工智能平台(AI Lab):提供丰富的人工智能算法和工具,可用于处理与3D点和体素化相关的数据。产品介绍链接:https://cloud.tencent.com/product/ai

请注意,以上推荐的产品仅作为参考,具体选择应根据实际需求和情况进行。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • SuperLine3D:从3D点到3D线

    这个工作来自于浙江大学和DAMO academy。在点云配准领域,尽管已经有很多方法被提出来,但是无论是传统方法,还是近年来蓬勃发展的基于深度学习的三维点云配置方法,其实在真正应用到真实的LiDAR扫描点云帧时都会出现一些问题。造成这种困窘的一个主要的原因在于LiDAR扫描到的点云分布极不均匀。具体而言,相较于RGBD相机,LiDAR的有效扫描深度要大很多。随着深度的增大,其激光发射出去的扇面将会变得稀疏。因此,即使是扫描同一目标或场景的点云帧之间,其尺度并不一致。导致想要研究的关键点周围的邻域点分布也存在较大不同,难以通过这些3D点的特征描述关联起点云帧。这个问题一直以来都十分棘手。这个工作独辟蹊径,提出对于这种点云数据,不再通过3D点来构建关联以实现点云配准,而是研究点云数据中的高层次的几何原语。这种做法直观来说是有道理的,因为这些高层次的几何原语通常会有较大的支撑点集,换句话说,其对于点云扫描和采样具有较大的鲁棒性,通常不会因为某个点没有被记录而影响相应几何原语的提取。同时,几何原语通常具有更具体的特征和几何结构,例如一条直线、一个平面等,其更容易构建不同帧间的关联,避免误匹配。但是,这种研究思路通常难度较大,原因在于缺乏足够的有标签的数据集。在这种情况下,这个工作显得极其重要,它不仅仅提供了一个数据集自动标注模型,同样也是少数真正开始探索几何原语用于点云配准任务的先河性的工作。

    02

    niftynet Demo分析 -- brain_parcellation

    论文详细介绍 通过从脑部MR图像中分割155个神经结构来验证该网络学习3D表示的效率 目标:设计一个高分辨率和紧凑的网络架构来分割体积图像中的精细结构 特点:大多数存在的网络体系结构都遵循完全卷积下行-向上采样路径。具有高空间分辨率的低层次特征首先被下采样用于更高层次的特征抽象;然后对特征图进行上采样,以实现高分辨率分割。本论文提出了一种新的3D架构,它包含了整个层的高空间分辨率特征图,并且可以在广泛的接受领域中进行训练 验证:通过从T1加权MR图像中自动进行脑区分割成155个结构的任务来验证网络,验证了采用蒙特卡罗方法对实验中存在漏失的网络进行采样来对体素水平不确定度估计的可行性 结果:经过训练的网络实现了通用体积图像表示的第一步,为其他体积图像分割任务的迁移学习提供了一个初始模型

    02

    NC:儿童和青少年的小脑生长模型

    在过去,小脑以其在运动功能中的关键作用而闻名。然而,越来越多的研究结果强调了小脑在认知功能和神经发育中的重要性。利用4862名被试的7240次神经成像扫描,我们描述并提供了儿童和青少年(年龄范围:6-17岁)的小脑发育模型,6-17岁是大脑发育和神经精神疾病发作的重要时期。除了传统上使用的小脑解剖分割外,我们还基于最近提出的功能分割生成生长模型。在这两种研究中,我们都发现了一个前后生长梯度,反映了与年龄相关的潜在行为和功能的改善,这类似于大脑成熟模式,并为直接相关的小脑-皮质发育轨迹提供了证据。最后,我们说明了目前的方法如何可以用于检测临床样本中的小脑异常。

    01

    论文简述 | Voxel Map for Visual SLAM

    在现代视觉SLAM系统中,从关键帧中检索候选地图点是一种标准做法,用于进一步的特征匹配或直接跟踪.在这项工作中,我们认为关键帧不是这项任务的最佳选择,因为存在几个固有的限制,如弱几何推理和较差的可扩展性.我们提出了一种体素图表示来有效地检索视觉SLAM的地图点.通过以光线投射方式对摄像机frustum进行采样来查询来自摄像机姿态的可见点,这可以使用有效的体素散列方法在恒定时间内完成.与关键帧相比,使用我们的方法检索的点在几何上保证落在摄像机的视野内,并且遮挡点可以在一定程度上被识别和去除.这种方法也很自然地适用于大场景和复杂的多摄像机配置.实验结果表明,我们的体素图与具有5个关键帧的关键帧图一样有效,并且在EuRoC数据集上提供了显著更高的定位精度(在RMSE平均提高46%),所提出的体素图表示是视觉SLAM中基本功能的一般方法,并且可广泛应用.

    02

    Science:Julich-Brain:一个新的细胞结构水平的概率脑图谱

    细胞结构是人类大脑在微结构上出现分离的基本生物原理,但就目前为止,还没有出现一个考虑到细胞层面及个体差异的人类脑图谱出现。本文介绍了Julich(德国于利希)实验室的最新研究成果——Julichu-Brain,这是一个包含皮层区域和皮层下核的细胞结构图的3D图谱。该图谱以概率的方式考虑了个体大脑之间的差异。除此以外,构建这样的一个脑图谱是需要大量的数据和工作量的,开发过程中需要开发嵌套的、相互依赖的工作流(working pipeline),使用该工具流可以检测大脑区域之间的边界、数据处理、追踪来源,以及灵活地执行不同工作流程,以处理不同空间尺度上的大量数据(这个工作流可能在日后起到更多的作用,开发更多的研究成果)。使用间隙映射的方法可以补充皮层映射,以实现完全的皮层覆盖。并且本图谱的开发考虑后续的动态进展,随着图谱绘制在不同方面的进展的调整,本图谱可以支持健康受试者和患者的神经影像学研究,以及建模和仿真,并可进行互操作,以连接其他脑图谱和资源。文章发表在Science杂志。

    01

    Neuro-Oncology:对脑胶质瘤IDH突变状态进行分类的一种新型的基于MRI的全自动深度学习算法

    异柠檬酸脱氢酶(Isocitrate dehydrogenase, IDH)突变状态已成为神经胶质瘤的重要预后标志。当前,可靠的IDH突变诊断需要侵入性外科手术。该研究的目的是使用T2加权(T2w)MR图像开发高度精确的、基于MRI的、基于体素的深度学习IDH分类网络,并将其性能与基于多模态数据的网络进行比较。研究人员从癌症影像档案馆(The Cancer Imaging Archive,TCIA)和癌症基因组图谱(The Cancer Genome Atlas,TCGA)中获得了214位受试者(94位IDH突变,120位IDH野生型)的多参数脑MRI数据和相应的基因组信息。他们开发了两个单独的网络,其中包括一个仅使用T2w图像的网络(T2-net)和一个使用多模态数据(T2w,磁共振成像液体衰减反转恢复序列(FLAIR)和T1 postcontrast)的网络(TS-net),以执行IDH分类任务和同时进行单标签肿瘤分割任务。本文使用3D的Dense-UNets的架构。使用三折交叉验证泛化网络的性能。同时使用Dice系数评估算法分割肿瘤的精度。T2-net在预测IDH突变状态任务上表现出97.14%±0.04的平均交叉验证准确率,灵敏度为0.97±0.03,特异性为0.98±0.01,曲线下面积(AUC)为0.98±0.01。TS-net的平均交叉验证准确性为97.12%±0.09,灵敏度为0.98±0.02,特异性为0.97±0.001,AUC为0.99±0.01。T2-net的肿瘤分割Dice系数的平均得分为0.85±0.009,TS-net的肿瘤分割Dice系数的平均得分为0.89±0.006。

    05
    领券