首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python数据科学系列:pandas入门详细教程

二者之间主要区别是: 从数据结构上看: numpy的核心数据结构是ndarray,支持任意维数的数组,但要求单个数组内所有数据是同质的,即类型必须相同;而pandas的核心数据结构是series和dataframe...pandas核心数据结构有两种,即一维的series和二维的dataframe,二者可以分别看做是在numpy一维数组和二维数组的基础上增加了相应的标签信息。...正因如此,可以从两个角度理解series和dataframe: series和dataframe分别是一维和二维数组,因为是数组,所以numpy中关于数组的用法基本可以直接应用到这两个数据结构,包括数据创建...需注意对空值的界定:即None或numpy.nan才算空值,而空字符串、空列表等则不属于空值;类似地,notna和notnull则用于判断是否非空 填充空值,fillna,按一定策略对空值进行填充,如常数填充...时间类型向量化操作,如字符串一样,在pandas中另一个得到"优待"的数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型列可用dt属性调用相应接口,这在处理时间类型时会十分有效。

15K20

【数据分析 | Numpy】Numpy模块系列指南(一),从设计架构说起

ndarray (N-dimensional array) 多维数组对象,用于存储同类型的元素,支持矢量化操作和广播运算。...处理形状不同的数组、矩阵运算等 线性代数 Linear Algebra 提供了线性代数运算的函数,如矩阵乘法、特征值分解、奇异值分解等。...flat 返回一个迭代器,用于以扁平化方式迭代数组中的元素。 strides 表示在每个维度上需要移动多少字节来获取下一个元素。 data 数组的缓冲区,包含数组的实际元素。...下面是一些常用的方法,并以Markdown表格的形式列出它们的名称和说明: 名称 说明 numpy.array() 从列表、元组或其他数组对象创建一个NumPy数组。...import numpy as np # numpy.array() arr = np.array([1, 2, 3]) # 参数: 输入的列表、元组或其他数组对象 # numpy.zeros()

19110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用Numba加速Python代码

    当然,在某些情况下numpy没有您想要的功能。 在我们的第一个例子中,我们将用Python为插入排序算法编写一个函数。该函数将接受一个未排序的列表作为输入,并返回排序后的列表作为输出。...加速Numpy操作 Numba的另一个亮点是加快了对Numpy的操作。这次,我们将把3个相当大的数组加在一起,大约是一个典型图像的大小,然后使用numpy.square()函数对它们进行平方。...查看下面的代码,看看在带有Numpy的Python中如何工作。 ? 注意,每当我们对Numpy数组进行基本数组计算(如加法、相乘和平方)时,代码都会自动由Numpy在内部向量化。...但是即使是Numpy代码也没有Numba优化后的机器代码快。下面的代码将执行与前面相同的数组操作。...第一个指定要操作的numpy数组的输入类型。这必须指定,因为Numba使用它将代码转换为最优版本。通过事先了解输入类型,Numba将能够准确地计算出如何最有效地存储和操作数组。

    2.2K43

    Python创建二维数组的正确姿势

    原因是浅拷贝,我们以这种方式创建的列表,list_two 里面的三个列表的内存是指向同一块,不管我们修改哪个列表,其他两个列表也会跟着改变。...相比 List 对象,NumPy 数组有以下优势: 1.这是因为列表 list 的元素在系统内存中是分散存储的,而 NumPy 数组存储在一个均匀连续的内存块中。...2.Numpy数组能够运用向量化运算来处理整个数组,速度较快;而 Python 的列表则通常需要借助循环语句遍历列表,运行效率相对来说要差。...3.NumPy 中的矩阵计算可以采用多线程的方式,充分利用多核 CPU 计算资源,大大提升了计算效率。 4.Numpy 使用了优化过的 C API,运算速度较快。...import numpy as np # 创建 2x2 数组且所有值是随机填充 x9 = np.random.random((2, 2)) print(x9) # 创建一个值在 [0, 10) 区间的

    8.3K20

    Transformers 4.37 中文文档(七十九)

    可以通过将.flac或.wav音频文件加载到List[float]类型的数组或numpy.ndarray中获得。通过声音文件库(pip install soundfile)等方式。...每个序列可以是一个 numpy 数组,一个浮点值列表,一个 numpy 数组列表或一个浮点值列表的列表。必须是单声道音频,不是立体声,即每个时间步长一个浮点数。...如果模型没有特定的最大输入长度(如 XLNet),则将禁用截断/填充到最大长度。...如果模型没有特定的最大输入长度(如 XLNet),则将禁用截断/填充到最大长度。...每个序列可以是一个 numpy 数组,一个浮点值列表,一个 numpy 数组列表或一个浮点值列表的列表。必须是单声道音频,不是立体声,即每个时间步长一个浮点数。

    25110

    Transformers 4.37 中文文档(十八)

    以独立于底层结构(BPE,SentencePiece 等)的方式向词汇表中添加新标记。...model_input_names(List[string],可选)— 模型前向传递接受的输入列表(如"token_type_ids"或"attention_mask")。...model_input_names (List[str]) — 模型前向传递中预期的输入列表。 padding_side (str) — 模型应用填充的默认方向。...因此,添加的标记和分词算法的词汇表中的标记不会以相同的方式处理。 请注意,当向词汇表添加新标记时,您应该确保还调整模型的标记嵌入矩阵,使其嵌入矩阵与分词器匹配。...因此,添加的标记和分词算法的词汇表中的标记不会以相同的方式处理。 请注意,当向词汇表添加新标记时,您应确保还调整模型的标记嵌入矩阵大小,以使其嵌入矩阵与分词器匹配。

    70410

    NumPy 基础知识 :1~5

    NumPy 数组的必要性 初学者提出的一个基本问题是。 为什么数组对于科学计算完全必要? 当然,可以对任何抽象数据类型(如列表)执行复杂的数学运算。...这可以避免大型程序中的许多混乱。 如我们将看到的,可以用多种方式创建 NumPy 数组。 创建数组的最简单方法之一是使用array函数。 注意,我们向函数传递了一个列表列表,组成列表的长度相等。...每个组成列表成为数组中的一行,并且这些列表的元素填充了结果数组的列。 array函数可以在列表甚至嵌套列表上调用。 由于此处输入的嵌套级别是 2,因此生成的数组是二维的。...这是本章将涉及的主题列表: NumPy 数组的基本操作和属性 通用函数(ufunc)和辅助函数 广播规则和形状操作 屏蔽 NumPy 数组 向量化运算 所有 NumPy 操作都是向量化的,您可以将操作应用于整个数组...]: np.min(x) Out[26]: 5 如您所见,numpy.minimum()比较两个数组并返回两个数组的最小值。

    5.7K10

    看图学NumPy:掌握n维数组基础知识点,看这一篇就够了

    教程内容分为向量 (一维数组)、矩阵 (二维数组)、三维与更高维数组3个部分。 Numpy数组与Python列表 在介绍正式内容之前,先让我们先来了解一下Numpy数组与Python列表的区别。...和Python列表相比,Numpy数组具有以下特点: 更紧凑,尤其是在一维以上的维度;向量化操作时比Python列表快,但在末尾添加元素比Python列表慢。 ?...△在末尾添加元素时,Python列表复杂度为O(1),NumPy复杂度为O(N) 向量运算 向量初始化 创建NumPy数组的一种方法是从Python列表直接转换,数组元素的类型与列表元素类型相同。...有时我们需要创建一个空数组,大小和元素类型与现有数组相同: ? 实际上,所有用常量填充创建的数组的函数都有一个_like对应项,来创建相同类型的常数数组: ?...因此在二维数组中,如果axis=0是按列,那么axis=1就是按行。 ? 矩阵运算 除了普通的运算符(如+,-,*,/,//和**)以元素方式计算外,还有一个@运算符可计算矩阵乘积: ?

    6K20

    NumPy学习笔记—(13)

    2.2.数组索引:获取单个元素 如果我们熟悉 Python 列表的索引方式,那么 NumPy 数组的索引方式也是很相似的。...,你可以使用负的索引值: x1[-1] 9 x1[-2] 7 在多维数组中获取元素值,可以在中括号中使用一个索引值的元组: 多维数组的索引方式与列表的列表索引方式是不同的。...列表的列表在 Python 中需要使用多个中括号进行索引,如x[i][j]的方式。...3.2.UFuncs 介绍 对于许多操作,NumPy 都为这种静态类型提供了编译好的函数。被称为向量化的操作。向量化操作可以简单应用在数组上,实际上会应用在每一个元素上。...中的向量化操作是通过ufuncs实现的,其主要目的就是在 NumPy 数组中快速执行重复的元素操作。

    1.5K20

    Python:Numpy详解

    创建指定形状的数组,数组元素以 1 来填充:  numpy.ones(shape, dtype = None, order = 'C') NumPy 从已有的数组创建数组  numpy.asarray...NumPy 迭代数组  NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。  迭代器最基本的任务的可以完成对数组元素的访问。 ...,返回新列表元素在旧列表中的位置(下标),并以列表形式储return_inverse:如果为true,返回旧列表元素在新列表中的位置(下标),并以列表形式储return_counts:如果为true,返回去重数组中的元素在原数组中的出现次数...NumPy 位运算包括以下几个函数:   NumPy 字符串函数  以下函数用于对 dtype 为 numpy.string_ 或 numpy.unicode_ 的数组执行向量化字符串操作。...函数创建一个以 0 填充的矩阵。

    3.6K00

    数据分析 | Numpy进阶

    回顾: Python数据分析之旅: 前戏 数据分析 | Numpy初窥 索引与切片 切片索引Numpy中选取数据子集或者单个元素的方式有很多,一维数组和Pyhon列表的功能差不多,看下图: ?...数组切片与列表最重要的区别在于:数组切片是原始数组的视图,这就是说数据不会被复制,视图上的任何修改都有会直接反映到源数据上,也就是说视图上的任何修改都有会直接改动到数据源,看下图运行效果: ?...运算和数据处理 Numpy数组使你可以将许多种数据处理任务表述为简洁的数据表达式,否则需要编写循环,用数组表达式代替循环的做法通常称为失量化.失量化的运算比普通的Python运算更快. ?...条件逻辑表述为数组运算 numpy.where函数是三元表达式x if condition else y的失量化版本,np.where的第二个和第三个参数不必是数组,它们都有可以是标量值,在数据分析中where...线性代数 线性代数是任何数组库的重要组成,Numpy提供了一个用于矩阵乘法的dot函数 ? ? numpy.linalg中一组标准的矩阵分解运算,如求逆和行列式之类的东西.

    1.7K10

    这是我见过最好的NumPy图解教程

    ♥ 机器学习在量化金融领域的误用!...NumPy中的数组操作 创建数组 我们可以通过将python列表传入np.array()来创建一个NumPy数组(也就是强大的ndarray)。...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...除此之外,NumPy之美的一个关键之处是它能够将之前所看到的所有函数应用到任意维度上。 NumPy中的矩阵操作 创建矩阵 我们可以通过将二维列表传给Numpy来创建矩阵。...你可以看到此NumPy数组的维度为[embedding_dimension x sequence_length]。 在实践中,这些数值不一定是这样的,但我以这种方式呈现它是为了视觉上的一致。

    1.8K41

    Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series、DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签...dataframe中的数据是以一个或者多个二位块存放的(而不是列表、字典或者别的一维数据结构)。 3.索引对象 pandas的索引对象负责管理轴标签和其他元素(比如轴名称等)。...4. pandas的主要Index对象 Index 最泛化的Index对象,将轴标签表示为一个由Python对象组成的NumPy数组 Int64Index 针对整数的特殊Index MultiIndex...可以看做由元数组组成的数组 DatetimeIndex 存储纳秒级时间戳(用NumPy的datetime64类型表示) PeriodIndex 针对Period数据(时间间隔)的特殊Index 5....函数应用和映射 NumPy的ufuncs(元素级数组方法)也可用操作pandas对象 DataFrame中将函数应用到由各列或各行所行成的一维数组上可用apply方法。 7.

    3.9K50

    NumPy 1.26 中文文档(五十六)

    (gh-20580) 更快的约简运算符 对于连续的基于整数的数组,约简操作如numpy.sum、numpy.prod、numpy.add.reduce、numpy.logical_and.reduce现在快得多...它们被添加到包含新键implementedby的模块的body列表中,该键列出了实现运算符或赋值的子例程或函数的名称。...(gh-20580) 更快的减少运算符 对于连续的基于整数的数组,减少运算如numpy.sum,numpy.prod,numpy.add.reduce,numpy.logical_and.reduce现在快得多...(gh-20580) 更快的缩减运算符 对连续整数数组的缩减操作,如numpy.sum、numpy.prod、numpy.add.reduce、numpy.logical_and.reduce,现在快得多...(gh-19135) numpy.vectorize 函数现在产生与基本函数相同的输出类 当一个尊重 numpy.ndarray 子类的函数被使用 numpy.vectorize 向量化时,向量化函数现在也对子类安全

    17110

    tf.lite

    参数:张量指标:要得到的张量的张量指标。这个值可以从get_output_details中的'index'字段中获得。返回值:一个numpy数组。...返回值:包含张量信息的字典列表。7、invokeinvoke()调用解释器。在调用此函数之前,请确保设置输入大小、分配张量和填充值。...永久保存该函数是安全的,但是永久保存numpy数组是不安全的。五、tf.lite.OpsSet类定义可用于生成TFLite模型的操作系统集。...(默认{})default_ranges_stats:整数的元组,表示没有指定范围的所有数组的(最小、最大)范围值。旨在通过“虚拟量化”实验量化。...转换模型时要应用的优化列表。如[Optimize.DEFAULT]。representative_dataset:可用于为模型生成输入和输出示例的代表性数据集。转换器可以使用数据集来评估不同的优化。

    5.3K60

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    如您所见,与典型的 Python 控制台相比,我们可以以更高级的方式使用 Jupyter 控制台。...您可以在 NumPy 文档中找到此类函数的完整列表。 使用它们时,我只会提及它们。 现在让我们来看一个例子: 首先,我们将创建一个数组,并将其填充为1,-1和0。...我们将使用列表列表来执行此操作,但是这些列表可以是元组,元组的元组甚至其他数组的列表。 还有一些方法可以自动创建充满数据的数组。...向量化函数按组件方式应用于数组的元素。 这些通常是高度优化的函数,可以在较快的语言(例如 C)的后台运行。...如果有序列或数据帧的元素找不到匹配项,则会生成新列,对应于不匹配的元素或列,并填充 Nan。 数据帧和向量化 向量化可以应用于数据帧。

    5.4K30

    Numpy库

    它提供了多维数组对象以及各种派生对象(如掩码数组和矩阵),并包含大量用于快速数组操作的数学函数库。 基础知识 数组创建 NumPy的主要数据结构是ndarray,即同质的多维数组。...可以通过以下几种方式创建ndarray: 从其他Python结构转换:例如列表和元组。...处理NaN值的函数:如nanmax()、nanmin()等,用于处理包含NaN值的数组操作。 如何在NumPy中实现矩阵分解算法?...向量化操作: 利用NumPy的向量化操作来替代循环,这将显著提升性能。例如,使用NumPy的np.add 、np.multiply 等函数进行数组操作,而不是逐个元素地进行加法或乘法运算。...此外,NumPy还能够进行向量化操作,如使用square进行平方计算,以及使用dot进行矩阵乘法。这些操作可以显著提升数据预处理的效率,进而提高整个模型训练过程的效率和效果。

    9510
    领券