如果需要更宽的日期范围,可以使用此脚本将该文件替换为不同的日期范围:https://github.com/facebook/prophet/blob/master/python/scripts/generate_holidays_file.py...,季节性可能取决于其他因素,例如每周季节性模式,在夏季是不同于一年中其余时间,或者每日季节性模式,在周末是不同于工作日。...add_regressor函数提供了更通用的接口,用于定义额外的线性回归量,特别是不要求回归量是二进制指示符。另一个时间序列可以用作回归量,尽管它的未来值必须是已知的。...此jupyter代码展示了一个使用天气因素作为预测自行车使用的额外回归量的示例,并提供了如何将其他时间序列作为额外回归量包含在内的很好的说明。...额外的回归量必须知道历史和未来的日期。因此,它必须是具有已知未来值(例如nfl_sunday),或者在其他地方单独预测过的结果。
如果需要更宽的日期范围,可以使用此脚本将该文件替换为不同的日期范围:https://github.com/facebook/prophet/blob/master/python/scripts/generate_holidays_file.py...五、季节性其他因素 在某些情况下,季节性可能取决于其他因素,例如每周季节性模式,在夏季是不同于一年中其余时间,或者每日季节性模式,在周末是不同于工作日。这些类型的季节性可以使用条件季节性来建模。...add_regressor函数提供了更通用的接口,用于定义额外的线性回归量,特别是不要求回归量是二进制指示符。另一个时间序列可以用作回归量,尽管它的未来值必须是已知的。...此jupyter代码展示了一个使用天气因素作为预测自行车使用的额外回归量的示例,并提供了如何将其他时间序列作为额外回归量包含在内的很好的说明。...额外的回归量必须知道历史和未来的日期。因此,它必须是具有已知未来值(例如nfl_sunday),或者在其他地方单独预测过的结果。
想一想:在普通的折线图中,如何自动地添加一条代表平均值的横线?如何添加一条带箭头的趋势线?如何快速地标注最大值和最小值?如何标注特殊事件?如何对折线图进行数据分析?...通过观察可以看到,销量每隔几天就有一个波谷,对照日历,发现一个规律:这些销量比较低的日期,都是周末或节假日。...排除周期性的因素之后,我们观察折线图中的最大值和最小值,看看它们是否在正常范围以内,如果不是的话,那么要分析背后的原因。...在折线图中,有一条代表平均值的横线,以及一条带箭头的趋势线,它们有助于对数据整体趋势的把握。...你不妨反思一下自己画过的图,是不是提高了信息传递的效率呢? 2. 画图方法 能画折线图的软件工具有很多,本文采用的是 Python 中的 matplotlib 库。
以下是一个示例代码片段,展示了如何使用Python进行时间戳转换: import pandas as pd # 读取数据 df = pd.read_csv('traffic_data.csv') #...以下是一个使用Matplotlib绘制时间序列图的示例: import matplotlib.pyplot as plt # 绘制时间序列图 plt.figure(figsize=(10, 6)) plt.plot...以下是一个使用Plotly绘制交互式时间序列图的示例: import plotly.express as px # 绘制交互式时间序列图 fig = px.line(df, x='Datetime',...以下是一些常见的交通数据可视化案例: 时间序列分析 时间序列分析是交通数据分析中的重要方法。通过绘制时间序列图,我们可以观察交通流量在不同时间段的变化趋势。...例如,使用Seaborn绘制交通流量的日均热力图: # 提取日期和时间信息 df['Date'] = df['Datetime'].dt.date df['Hour'] = df['Datetime']
在本案例中,我们使用PCA来减少数据的维度,并捕捉不同站点的交通模式。PCA的主要步骤如下:数据标准化:在应用PCA之前,我们需要对数据进行标准化处理,以确保每个特征具有相同的尺度。...以下是一个示例代码片段,展示了如何使用Python进行时间戳转换:import pandas as pd# 读取数据df = pd.read_csv('traffic_data.csv')# 将时间戳从字符串转换为日期时间格式...以下是一个使用Matplotlib绘制时间序列图的示例:import matplotlib.pyplot as plt# 绘制时间序列图plt.figure(figsize=(10, 6))plt.plot...以下是一个使用Plotly绘制交互式时间序列图的示例:import plotly.express as px# 绘制交互式时间序列图fig = px.line(df, x='Datetime', y='...以下是一些常见的交通数据可视化案例:时间序列分析时间序列分析是交通数据分析中的重要方法。通过绘制时间序列图,我们可以观察交通流量在不同时间段的变化趋势。
Python 具有用于单元测试的PyUnit API。 作为 NumPy 的用户,我们可以利用之前在操作中看到的assert函数。 实战时间 – 编写单元测试 我们将为一个简单的阶乘函数编写测试 。...实战时间 – 绘制多项式及其导数 让我们使用deriv()函数和m作为1绘制多项式及其一阶导数。 我们已经在前面的“实战时间”部分中做了第一部分。 我们希望使用两种不同的线型来识别什么是什么。...(可选)我们可以在图中指定数据点的颜色和大小以及 alpha 透明度。 实战时间 – 用散点图绘制价格和数量回报 我们可以轻松地绘制股票价格和交易量回报的散点图。...实战时间 – 使用图例和标注 在第 3 章,“熟悉常用函数”中,我们学习了如何计算股票价格的 EMA。 我们将绘制股票的收盘价及其三只 EMA 的收盘价。 为了阐明绘图,我们将添加一个图例。...我们需要定义一个用于定期更新屏幕的回调函数。 我们还需要一个函数来生成要绘制的数据。 实战时间 – 动画绘图 我们将绘制三个随机数据集 ,并将它们显示为圆形,点和三角形。
在这么多不同的库中有这么多的可视化方法,所以在一篇文章中包含所有这些方法是不实际的。 但是本文可以为您提供足够的工具和技术来清楚地讲述一个故事或理解和可视化时间序列数据。...看看它是怎样的: df['Volume'].plot() 这是我们的“Volume”数据图,看起来有些忙碌而有一些大的峰值。将所有其他列也绘制在一个图中以同时检查所有它们的曲线将是一个好主意。...‘Open’, ‘Close’, ‘High’ ,‘Low’ 数据的曲线形状具有相同的形状。只有“Volume”具有不同的形状。 我上面使用的折线图非常适合显示季节性。...图表展示变化 很多时候,查看数据如何随时间变化比查看日常数据更有用。 有几种不同的方法可以计算和可视化数据的变化。 shift shift函数在指定的时间之前或之后移动数据。...深红色意味着非常高的数值,深绿色意味着非常低的数值。 分解图 分解将在同一个图中显示观察结果和这三个元素: 趋势:时间序列一致的向上或向下的斜率。
LineSpec) stackedplot(___,Name,Value) stackedplot(parent,___) s = stackedplot(___) stackedplot(tbl) 在堆叠图中绘制表或时间表的变量...该函数在垂直层叠的单独 y 轴中绘制变量。这些变量共享一个公共 x 轴。 如果 tbl 是表,则该函数绘制变量对行号的图。 如果 tbl 是时间表,则该函数绘制变量对行时间的图。...stackedplot 函数绘制 tbl 的所有数值、逻辑、分类、日期时间和持续时间变量,并忽略具有任何其他数据类型的表变量。...例如,stackedplot(tbl,vars) 仅绘制 vars 指定的表或时间表变量。 stackedplot(___,'XVariable',xvar) 指定为堆叠图提供 x 值的表变量。...可以将此选项与前面语法中的任何输入参数组合一起使用。名称-值对组设置应用于堆叠图中的所有绘图。将每个属性名称括在引号中。
时间序列预测通常具有十足的挑战性,这是由时间序列预测的方法众多、且每种方法都包含很多不同的超参数所造成的。 Prophet是一个专门为预测单变量时间序列数据集而设计的开源库。...在本教程中,你将去探索如何使用这个由Facebook开发的Prophet库进行时间序列预测。...训练数据集的图将会被绘制出来,被预测日期的预测值及其上下限也会被展示在图中。...,我们可以观察到训练数据被使用黑色圆点显示在图中,预测值被使用蓝线显示,预测值的上下限为蓝色阴影区域。...如果把期望值(真实值)和预测值绘制在一张图中,它会帮助我们了解样本外预测和已知真实值之间的匹配程度。
收盘价(close) 最后一笔交易前一分钟所有交易的成交量加权平均价,无论当天股价如何振荡,最终将定格在收盘价上 成交量(volume) 指一个时间单位内对某项交易成交的数量,可根据成交量的增加幅度或减少幅度来判断股票趋势...它告诉我们该数据一共有1481行,索引是时间格式,日期从2013年1月4日到2019年3月14日。总共有9列,并列出了每一列的名称和数据格式,并且没有缺失值,其中pb为1434行,即末尾是缺失值。...print(stock_data.info()) 2、绘制股票成交量的时间序列图 绘制股票在2013年到2019年的日成交量的时间序列图。...绘制股票在2016年3月份—2017年12月份的日收盘价和日成交量的时间序列图,因为它们的数值差异很大,所以采用两套纵坐标系来做图。...所以我们可以将换手率、市值、pe这三个指标去除,这里使用了相关性关系来实现数据降维。 注意:相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。
我们主要使用其中的 pyplot 模块,它是绘制图表的核心工具。...假设我们有一个包含时间序列数据的 CSV 文件,内容如下: 日期,销售额 2023-01-01,200 2023-01-02,300 2023-01-03,150 2023-01-04,400 2023...plt.legend():显示图例,以便区分不同的产品线。 通过这个例子,我们学会了如何在同一个图表中绘制多个数据系列,这在多维数据的分析中非常有用。...4.3 创建子图布局 当我们有多组数据想要展示在同一个窗口时,可以使用子图布局。在 matplotlib 中,子图功能允许我们将同一个图表窗口划分为多个区域,每个区域展示不同的数据。...通过子图的布局,我们可以在同一个窗口内展示不同的数据集,这有助于比较不同的趋势。 第五部分:图表定制与高级功能 5.1 自定义颜色和样式 在很多情况下,我们希望图表能够符合品牌或特定设计要求。
导读:本文将介绍一个智能项目,我们将使用回归建模方式来模拟Capital Bikeshare系统中的自行车共享数据集,并了解温度、风和时间等变量是如何影响自行车租赁需求的。...01 共享单车租赁需求回归系数分析 本文中,我们将构建一个简单直观的模型,并使其与不同的环境因素进行交互,进而了解这些环境因素是如何影响自行车租赁需求的。...利用这个原理,通过线性回归模型,我们就可推断随着时间推移和不同环境参数的变化,自行车租赁在需求上的变化。最终我们希望看到的是,这个模型能否帮助我们预测未来的自行车租赁需求。...▲图10 自行车租赁数量与风速关系散点图(风速值已做归一化处理) 可以看到,特征hum或者湿度散点图中,所有数据点几乎都密集在一个范围内,尽管边缘处也出现了稀疏点。...RMSE最终转化到与结果变量(也称为y轴标签)相同的单位来表示误差(即RMSE值与y值具有相同量纲),因此很容易看出模型在学习/预测自行车租赁方面表现如何,而误差是置信区间的一种表现形式。
那么问题来了,读者在使用Python绘制时间维度的折线图时是否遇到过这样的问题:怎么让时间轴表现的不拥挤,又能够友好地呈现呢?就如下图的方式: ?...本期我们就来聊聊Python中关于时间轴的几种处理办法,包括如何控制时间轴呈现的刻度个数、刻度间隔和刻度标签的旋转。...语法介绍 ---- 在Python中绘制折线图,需要使用matplotlib模块中的plot函数实现,该函数的具体语法如下: plt.plot(x, y, linestyle, linewidth, color...如上图所示,我们在原有代码的基础上做了两方面的修改,一个是将日期呈现为“月-日”的格式,这样可以缩短刻度标签;另一个是我们控制了x轴刻度标签的个数(如图中呈现了10个刻度值)。...如上图所示,标签值之间形成了固定的间隔,即7天。但是还是存在重叠或拥挤问题,解决的办法有两种,一个是拉长间隔天数,另一个是将刻度标签旋转30度或45度。
上图中,除了刚才我们使用的 curl ,还包括以下语言访问 API 接口的样例说明: Java C# PHP Python Object C 我们以 Python 作为例子,点开标签页看看。...想想一个普通用户,凭什么要了解不同版本 Python 之间的语句差异?凭什么要对这种版本转换的解决方式心里有数? 在他们看来,官方网站提供的样例,就应该是可以运行的。...下面我们绘制一个简单的时间序列对比图形。 读入绘图工具包 plotnine 。 注意我们同时读入了 date_breaks,用来指定图形绘制时,时间标注的间隔。...绘制时间的时候,以“2周”作为间隔周期,标注时间上的数据统计量信息。 我们修改横轴的标记为中文的“日期”。...转换 JSON 列表为数据框; 如何将测试通过后的简单 Python 语句打包成函数,以反复调用,提高效率; 如何用 plotnine (ggplot2的克隆)绘制时间序列折线图,对比不同城市 AQI
我花了几天的时间,前后写了1000多行Python代码,最终得出了一个完整的股票分析预测工具。虽然我没有自信用这个来投资某些个股,但在整个过程中我学到了很多Python的知识。...秉承开源的精神,在这里我打算分享这些代码,让更多的人受益。 ? 本文将展示如何使用Stocker,这是基于Python的股票分析预测工具。...在Python中,类的实例称为对象,创建对象有时称为实例化或构造。为了创建一个Stocker对象,我们需要传递一个有效的股票代码。...微软股票数据 Python类的好处是方法(函数)和所操作的数据与同一个对象相关联。我们可以使用Stocker对象的方法来绘制股票的历史股价。...除了绘制相关的搜索频率外,Stocker还会显示图表日期范围内的热门搜索词。通过将值除以最大值将y轴的值控制在0和1之间,从而让我们比较两个不同比例的变量。
注意直方图中与西南风向相对应的峰值。 平均温度似乎在 50 度左右触底。 分析风速 风速是非常重要的值。 KNMI De Bilt 数据文件还具有以米/秒表示的每日平均风速数据。...我们将绘制平均每月降雨和日照时间的条形图。 这里使用cal模块来显示图中的月份缩写名称。...,其中将时间序列中的下一个值y(t+1)相对于前一个值y(t)进行了绘制: 绘制自相关如下: autocorrelation_plot(data) 这可能会导致以下图表: 如您所见,自相关下降的延迟更大...轻度离群值的定义是与第一个或第三个四分位数相差 1.5 个四分位数。...移动平均线 移动平均值是常用的分析时间序列数据的工具。 移动平均线定义了一个以前查看过的数据的窗口,该窗口在每次向前滑动一个周期时将其平均。 不同类型的移动平均线在平均权重方面本质上有所不同。
height:一个数或数组,条形图的纵坐标(高度)。 [width]:一个数或数组,条形的宽度,默认值0.8,为可选参数。 [bottom]:一个数或数组,条形的起始高度,默认值0,为可选参数。...五、叠加条形图 有时一个变量的数值恒小于另一个变量,这时可以把两个条形图绘制到一个条形图中,用不同的颜色显示这两个条形图即可。...比如股票价格的最小值恒小于最大值,可以把这两个数组绘制在同一个条形图中,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价','mean...有时需要把两组数值绘制在同一个条形图中,以股票最高价和最低价为示例,绘制拼接条形图,具体语句如下: result = date.groupby(date.index.year).agg(high=('最高价...至此,在Python中绘制条形图已全部讲解完毕,感兴趣的同学可以自己实现一遍
数据 为了说明这是如何工作的,让我们假设我们有一个简单的数据集,它有一个datetime列和几个其他分类列。您感兴趣的是某一列(“类型”)在一段时间内(“日期”)的汇总计数。...例如,如果您有两个不同的具有时间序列数据或多个子集的DataFrame,则可以继续向graph_object添加。...因此,我们可以将它们作为图形对象在循环中绘制出来。 注意,我们使用Graph Objects将两类数据绘制到一个图中,但使用Plotly Express为每个类别的趋势生成数据点。...总结 在本文中介绍了使用Plotly将对象绘制成带有趋势线的时间序列来绘制数据。 解决方案通常需要按所需的时间段对数据进行分组,然后再按子类别对数据进行分组。...在对数据分组之后,使用Graph Objects库在每个循环中生成数据并为回归线绘制数据。 结果是一个交互式图表,显示了每一类数据随时间变化的计数和趋势线。
5行数据 print(StockReturns.head()) # 绘制组合收益随时间变化的图 StockReturns.Portfolio.plot() plt.show() 绘制该组合投资收益随时间变化的图如下...2、投资风险最小组合 一种策略是选择最低的风险,且在该风险水平下收益最高的组合,称为最小风险组合(GMV portfolio)。 让我们找到风险最小的组合,并绘制在代表收益-风险的散点图中。...# 找到标准差最小数据的索引值 min_index = RandomPortfolios.Volatility.idxmin() # 在收益-风险散点图中突出风险最小的点 RandomPortfolios.plot...我们首先来计算上述蒙特卡洛模拟的组合所对应的夏普比率,并将之作为第三个变量绘制在收益-风险的散点图中,这里采用颜色这一视觉线索来表征夏普比率。...接着再找到夏普比率最大的组合,将其绘制在收益-风险的散点图中。
这些图表根据可视化目标的 7 个不同情景进行分组。例如,如果要想象两个变量之间的关系,请查看“关联”部分下的图表。或者,如果您想要显示值如何随时间变化,请查看“变化”部分,依此类推。...多个时间序列(Multiple Time Series) 您可以绘制多个时间序列,在同一图表上测量相同的值,如下所示。 41....使用辅助 Y 轴来绘制不同范围的图形(Plotting with different scales using secondary Y axis) 如果要显示在同一时间点测量两个不同数量的两个时间序列,...带有误差带的时间序列(Time Series with Error Bands) 如果您有一个时间序列数据集,每个时间点(日期/时间戳)有多个观测值,则可以构建带有误差带的时间序列。...您可以在下面看到一些基于每天不同时间订单的示例。另一个关于 45 天持续到达的订单数量的例子。 在该方法中,订单数量的平均值由白线表示。并且计算 95% 置信区间并围绕均值绘制。 43.
领取专属 10元无门槛券
手把手带您无忧上云