KMeans
KMeans是一种无监督学习聚类方法, 目的是发现数据中数据对象之间的关系,将数据进行分组,组内的相似性越大,组间的差别越大,则聚类效果越好。...无监督学习,也就是没有对应的标签,只有数据记录.通过KMeans聚类,可以将数据划分成一个簇,进而发现数据之间的关系.
?...原理
KMeans算法是将数据\({x^1, x^2 ,..., x^n}\)聚类成k个簇,其中每个\(x^i \in R^n\), 算法具体描述:
随机选择k个聚类质心点:\(\mu_1, \mu_2...伪代码:
创建k个点作为起始质心;
当任意一个点的簇分配结果发生改变时:
对数据集中的每个数据点:
对每个质心:
计算质心和当前数据点的相似度...二分k均值:首先将所有数据看成一个簇,然后将该簇一分为二,之后选择其中一个簇继续划分, 如何选择簇取决于对其划分是否可以最大程度的降低SSE的值;然后反复重复,直到得到K个簇为止.