目录 一、梯度下降概念 二、要点 三、梯度下降法求解线性回归步骤 四、使用Numpy实现一元线性回归 五、使用TensorFlow实现一元线性回归 六、总结 ---- 一、梯度下降概念 梯度下降法是一个一阶最优化算法...要使用梯度下降法找到一个函数的局部极小值,必须响函数上当前对于梯度(或者近似梯度)的反方向的规定步长居里点进行迭代搜索。所以梯度下降法可以帮助我们求解某个函数的极小值或者最小值。...对于n为问题就是最优解,梯度下降法是最常用的方法之一。 二、要点 借助 TensorFlow 的可训练变量和自动求导机制使用梯度下降法求解线性回归问题。 ?...五、使用TensorFlow实现一元线性回归 第一步:加载数据 # 导入库 import numpy as np import tensorflow as tf print("TensorFlow version...六、总结 使用TensorFlow实现梯度下降法,梯度带会自动计算损失函数的梯度而不用我们写代码实现偏导数的实现过程。 ---- 欢迎留言,一起学习交流~ 感谢阅读 END
如何使用神经网络解决问题 神经网络是一种特殊的机器学习(ML)算法。因此,与每个机器学习算法一样,它遵循数据预处理,模型构建和模型评估等常规的机器学习工作流程。...而最流行的深度学习库,仅举几例: Caffe DeepLearning4j TensorFlow Theano Torch 我们已经了解了图像是如何储存的以及有哪些常用的图像处理库,现在让我们来看看TensorFlow...典型的TensorFlow“张量流图" 每个库都有自己的“实现细节”,即按照其编程范式编写程序的一种方法。...中实现神经网络 注意:我们可以使用不同的神经网络体系结构来解决这个问题,但是为了简单起见,我们基于深度多层前向感知器实现。...神经网络的典型实现如下: 确定要使用神经网络体系结构 将数据传输到模型 在模型中,数据首先被分批以便可以被分批提取。首先对数据进行预处理,然后将其分批加入神经网络进行训练。 然后模型被逐渐训练成型。
选自Medium 作者:DeviceHive 机器之心编译 参与:Nurhachu Null、刘晓坤 本文介绍了一种使用 TensorFlow 将音频进行分类(包括种类、场景等)的实现方案,包括备选模型...、备选数据集、数据集准备、模型训练、结果提取等都有详细的引导,特别是作者还介绍了如何实现 web 接口并集成 IoT。...这篇文章具体描述了我们选择哪款工具、我们面临的挑战是什么、我们如何用 TensorFlow 训练模型,以及如何运行我们的开源项目。...这里我们使用 PyAudio,它提供了可以在很多平台上运行的简单接口。 音频准备 正如我们之前所提及的,我们要使用 TensorFlow 的 VGGish 模型作为特征提取器。...3.web 接口 python daemon.py 实现了一个简单的 web 接口,默认配置下在本地的 8000 端口(http://127.0.0.1:8000/)。
编者按:本文节选自图书《TensorFlow实战》第五章,本书将重点从实用的层面,为读者讲解如何使用TensorFlow实现全连接神经网络、卷积神经网络、循环神经网络,乃至Deep Q-Network。...图5-4 LeNet-5结构示意图 TensorFlow实现简单的卷积网络 本节将讲解如何使用TensorFlow实现一个简单的卷积神经网络,使用的数据集依然是MNIST,预期可以达到99.2%左右的准确率...本节代码主要来自TensorFlow的开源实现。 ? 接下来要实现的这个卷积神经网络会有很多的权重和偏置需要创建,因此我们先定义好初始化函数以便重复使用。...TensorFlow实现进阶的卷积网络 本节使用的数据集是CIFAR-10,这是一个经典的数据集,包含60000张32×32的彩色图像,其中训练集50000张,测试集10000张。...然后我们载入一些常用库,比如NumPy和time,并载入TensorFlow Models中自动下载、读取CIFAR-10数据的类。本节代码主要来自TensorFlow的开源实现。 ?
编者按:本文节选自图书《TensorFlow实战》第五章,本书将重点从实用的层面,为读者讲解如何使用TensorFlow实现全连接神经网络、卷积神经网络、循环神经网络,乃至Deep Q-Network。...图5-4 LeNet-5结构示意图 TensorFlow实现简单的卷积网络 本节将讲解如何使用TensorFlow实现一个简单的卷积神经网络,使用的数据集依然是MNIST,预期可以达到99.2%左右的准确率...本节代码主要来自TensorFlow的开源实现。...TensorFlow实现进阶的卷积网络 本节使用的数据集是CIFAR-10,这是一个经典的数据集,包含60000张32×32的彩色图像,其中训练集50000张,测试集10000张。...本节代码主要来自TensorFlow的开源实现。
TensorFlow是一个用于人工智能的开源神器,是一个采用数据流图(data flow graphs)用于数值计算的开源软件库。...数据流图使用节点(nodes)和边线(edges)的有向图来描述数学计算,图中的节点表示数学操作,也可以表示数据输入的起点或者数据输出的终点,而边线表示在节点之间的输入/输出关系,用来运输大小可动态调整的多维数据数组...TensorFlow可以在普通计算机、服务器和移动设备的CPU和GPU上展开计算,具有很强的可移植性,并且支持C++、Python等多种语言。...import tensorflow as tf import numpy as np import time #使用 NumPy 生成随机数据, 总共 2行100列个点. x_data = np.float32...构建训练模型,matmul为矩阵乘法运算 y = tf.matmul(W, x_data) + b #最小均方差 loss = tf.reduce_mean(tf.square(y - y_data)) #使用梯度下降算法进行优化求解
本文将深入探讨 Puppeteer 如何通过X 和 Y 坐标精准实现鼠标移动,并结合实际案例展示如何采集小红书网站的内容。...这就要求我们在代码中实现:模拟人类鼠标移动:基于 X 和 Y 坐标的动态轨迹。代理 IP 技术:隐藏爬虫的真实 IP。自定义请求头:包括 User-Agent 和 Cookie。...实现代理 IP使用代理 IP 技术能够有效地绕过 IP 限制。本文将参考爬虫代理的服务,通过配置代理服务器的地址、端口、用户名和密码,让 Puppeteer 的请求看起来更真实。...鼠标移动模拟:采用 mouse.move 方法,通过动态坐标和步数实现平滑移动,模仿人类操作。页面内容抓取:成功获取小红书页面的文本内容。...结论通过结合 Puppeteer 的强大功能,我们不仅实现了对 X 和 Y 坐标的鼠标轨迹模拟,还在代码中整合了代理 IP 技术、Cookie 和 User-Agent 的设置。
在上一篇我们了解了卷积的概念,并且使用numpy实现了卷积。...今天我们就使用tensorflow来实现卷积,顺便和我们自己实现的卷积结果对比,验证我们的实现是否正确。...tensorflow实现卷积 API介绍 tensorflow是一个数据流图,tf基础使用后面有时间会再从基础进行介绍,今天直接上卷积的使用了,主要用到的API就是tf.nn.conv2d 对参数进行简单介绍...cudnn加速 data_format:数据格式,一般使用默认的NHWC,通道在最后 `` tensorflow代码实现 数据处理 我们还是用和上一篇一样的数据,回顾下在numpy里面我们使用的输入...shape[batch,C,H,W]通道数是在前面,但是在tensorflow提供的API中默认是使用的NHWC,同理filter我们在使用numpy实现时shape是[C_out,C_in,H,W]在
今天,给大家分析一下Tensorflow源码之GPU调用是如何实现的? 1....Tensorflow GPU支持 Tensorflow 支持GPU进行运算,目前官方版本只支持NVIDIA的GPU,可以在tensorflow的官方上看到。...Tensorflow 对GPU的运算的支持最小力度就是OP,也就是我们常说的算子,下图提供了Tensorflow的一些常见算子,而每个算子在Tensorflow上都会提供GPU的算法:关于OP的具体实现...,如果要支持OpenCL,可以参考开源(点击打开链接) 对CUDA的支持使用了基于CUDA平台的第三方开发库,没有直接使用CUDA编程 2.2 直接调用CUDA Tensorflow 同时本身也可以直接调用...定义使用的网格,block, thread数 [html] view plain copy print?
AlexNet是2012年ImageNet比赛的冠军,虽然过去了很长时间,但是作为深度学习中的经典模型,AlexNet不但有助于我们理解其中所使用的很多技巧,而且非常有助于提升我们使用深度学习工具箱的熟练度...尤其是我刚入门深度学习,迫切需要一个能让自己熟悉tensorflow的小练习,于是就有了这个小玩意儿.........先放上我的代码:https://github.com/hjptriplebee/AlexNet_with_tensorflow 如果想运行代码,详细的配置要求都在上面链接的readme文件中了。...本文建立在一定的tensorflow基础上,不会对太细的点进行说明。 模型结构 ? 关于模型结构网上的文献很多,我这里不赘述,一会儿都在代码里解释。
准备工作 由于将TensorFlow安装到了Conda的tensorflow环境,虽然可以用Jupyter notebook打开,但是没有提示,写代码不方便,所以使用PyCharm进行编写。...MNIST数据集简介 该数据集是机器学习入门级别的数据集,也是tensorflow在教程中使用的数据集。包含手写数字图片以及图片的标签(标签告诉我们图片中是数字几)。...下图横坐标代表图片索引,纵坐标代表每个像素值。 ? 索引-像素图 每个图片有一个标签,代表它是数字几,那么下图的横坐标代表图片索引,纵坐标代表数字几。 ?...用tensorflow实现交叉熵函数: cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=...如梯度下降法: train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) run tensorflow 1、
原文博客:Doi技术团队 链接地址:https://blog.doiduoyi.com/authors/1584446358138 初心:记录优秀的Doi技术团队学习经历 本文链接:使用Tensorflow...实现声纹识别 前言 本章介绍如何使用Tensorflow实现简单的声纹识别模型,首先你需要熟悉音频分类,没有了解的可以查看这篇文章《基于Tensorflow实现声音分类》。...Python 3.7 Tensorflow 2.0 安装libsora 最简单的方式就是使用pip命令安装,如下: pip install pytest-runner pip install librosa...如何已经读过笔者《基于Tensorflow实现声音分类》这篇文章,应该知道语音数据小而多,最好的方法就是把这些音频文件生成TFRecord,加快训练速度。...librosa可以很方便得到音频的梅尔频谱,使用的API为librosa.feature.melspectrogram(),输出的是numpy值,可以直接用tensorflow训练和预测。
在这段艰难的疫情期间,我们决定建立一个非常简单和基本的卷积神经网络(CNN)模型,使用TensorFlow与Keras库和OpenCV来检测人们是否佩戴口罩。 ?...我们将使用这些图像悬链一个基于TensorFlow框架的CNN模型,之后通过电脑端的网络摄像头来检测人们是否戴着口罩。此外,我们也可以使用手机相机做同样的事情。...我们还使用RGB值设置边界矩形颜色。...为此,首先我们需要实现人脸检测。在此,我们使用基于Haar特征的级联分类器来检测人脸的特征。...检测是否戴口罩 在最后一步中,我们通过OpenCV库运行一个无限循环程序,使用我们的网络摄像头,在其中我们使用Cascade Classifier检测人脸。
tensorflow不能对张量进行直接赋值操作,如果你尝试修改一个tensor中的内容,会报下面的错误: TypeError: 'Tensor' object does not support item...我们一起来看看实现步骤!...]], minValue:[[3],[2],[2]]} 得到每行第一个小于最小值的位置的索引 这里,我们首先判断每个位置的数是否小于最小值,如果小于最小值,返回1,大于等于最小值,返回0,那么使用...如果还有简单的方法实现上面的需求,欢迎留言哟!...深度强化学习-Actor-Critic算法原理和实现 深度强化学习-DDPG算法原理和实现 对抗思想与强化学习的碰撞-SeqGAN模型原理和代码解析 有关作者: 石晓文,中国人民大学信息学院在读研究生
它是一种将三维空间坐标(x,y,z)映射到二维平面坐标(x',y')的技术。...在GEE中我们可以使用哨兵2号数据其中任何一个波段所自带的坐标,让其成为我们默认的坐标,然后将其重新投影。...不过我们也可以使用投影的 wkt 进行新投影,以便获得默认的投影比例和偏移量。...返回此投影的基坐标系的 WKT 。...projObj.wkt()) var eeGeomUtm = ee_geom.transform(projObj, 1).coordinates().get(0); print(eeGeomUtm); 使用
在这篇文章中,将手把手带领读者利用TensorFlow实现一个简单的算法来合成对抗样本,之后使用这种技术建立一个鲁棒的对抗性例子。...import tensorflow as tf import tensorflow.contrib.slim as slim import tensorflow.contrib.slim.nets as...使用tf.Variable而不是使用tf.placeholder,这是因为要确保它是可训练的。当我们需要时,仍然可以输入它。...在这个框架中,对抗样本是解决一个约束优化的问题,可以使用反向传播和投影梯度下降来解决,基本上也是用与训练网络本身相同的技术。算法很简单: 首先将对抗样本初始化为X'←X。...可以使用一个技巧让TensorFlow为我们做到这一点,而不是通过手动实现梯度采样得到:我们可以模拟基于采样的梯度下降,作为随机分类器的集合中的梯度下降,随机分类器从分布中随机抽取并在分类之前变换输入。
本文简要地介绍了使用 CNN 和 LSTM 实现序列分类的方法,详细代码请查看 Github。...使用 CNN 处理图像不需要任何手动特征工程,网络会一层层自动从最基本的特征组合成更加高级和抽象的特征,从而完成计算机视觉任务。 在本文中,我们将讨论如何使用深度学习方法对时序数据进行分类。...作者使用 TensorFlow 和实现并训练模型,文中只展示了部分代码,更详细的代码请查看 Github。...本文案例中通道数为 9,即 3 个坐标轴每一个有 3 个不同的加速检测(acceleration measurement)。...剩下的部分就是标准的 LSTM 实现了,包括构建层级和初始状态。 下一步就是实现网络的前向传播和成本函数。
一:预训练模型介绍 Tensorflow Object Detection API自从发布以来,其提供预训练模型也是不断更新发布,功能越来越强大,对常见的物体几乎都可以做到实时准确的检测,对应用场景相对简单的视频分析与对象检测提供了极大的方便与更多的技术方案选择...tensorflow object detection提供的预训练模型都是基于以下三个数据集训练生成,它们是: COCO数据集 Kitti数据集 Open Images数据集 每个预训练模型都是以tar...二:使用模型实现对象检测 这里我们使用ssd_mobilenet模型,基于COCO数据集训练生成的,支持90个分类物体对象检测,首先需要读取模型文件,代码如下 tar_file = tarfile.open
TensorFlow Probability是一个构建在TensorFlow之上的Python库。它将我们的概率模型与现代硬件(例如GPU)上的深度学习结合起来。...Probability中的实现 我们先创建一个正态分布随机变量并从中取样。...使用tf.GradientTape(),它是访问TensorFlow的自动微分特性的API。然后指定要训练的变量,最小化损失函数并应用梯度。...Probability的实现。...最后通过定义一个TensorFlow变量、一个负对数似然函数并应用梯度,实现了一个使用TensorFlow Probability的自定义训练过程。 作者:Luís Roque