首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas 学习手册中文第二版:1~5

财务信息的处理面临许多挑战,以下是一些挑战: 表示随着时间变化的安全数据,例如股票价格 在相同时间匹配多个数据流的度量 确定两个或多个数据流的关系(相关性) 将时间和日期表示为实体流 向上或向下转换数据采样周期...Pandas 序列和数据帧简介 让我们开始使用一些 Pandas,并简要介绍一下 Pandas 的两个主要数据结构Series和DataFrame。...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...,演示初始化期间如何执行对齐以及查看如何确定数据帧的尺寸。...连接行 可以使用pd.concat()函数并通过指定axis=0将来自多个DataFrame对象的行彼此连接。

8.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    合并多个Excel文件,Python相当轻松

    ,df_2称为右数据框架,将df_2与df_1合并基本上意味着我们将两个数据帧框架的所有数据合并在一起,使用一个公共的唯一键匹配df_2到df_1中的每条记录。...df_1和df_2中的记录数相同,因此我们可以进行一对一的匹配,并将两个数据框架合并在一起。...这一次,因为两个df都有相同的公共列“保险ID”,所以我们只需要使用on='保险ID'来指定它。最终的组合数据框架有8行11列。...有两个“保单现金值”列,保单现金值_x(来自df_2)和保单现金值_y(来自df_3)。当有两个相同的列时,默认情况下,pandas将为列名的末尾指定后缀“_x”、“_y”等。...最终数据框架中只有8行,这是因为df_3只有8条记录。默认情况下,merge()执行”内部”合并,使用来自两个数据框架的键的交集,类似于SQL内部联接。

    3.8K20

    Pandas 秘籍:1~5

    最后两个秘籍包含在数据分析期间经常发生的简单任务。 剖析数据帧的结构 在深入研究 Pandas 之前,值得了解数据帧的组件。...另见 Pandas dtypes的官方文档 NumPy 数据类型官方文档 选择单列数据作为序列 序列是来自数据帧的单列数据。 它是数据的一个维度,仅由索引和数据组成。...shape属性返回行和列数的两个元素的元组。size属性返回数据帧中元素的总数,它只是行和列数的乘积。ndim属性返回维数,对于所有数据帧,维数均为 2。...它们能够独立且同时选择行或列。 准备 此秘籍向您展示如何使用.iloc和.loc索引器从数据帧中选择行。....jpeg)] 请注意,前面的数据帧中的第三,第四和第五行中的所有值是如何丢失的。

    37.6K10

    如何通过Maingear的新型Data Science PC将NVIDIA GPU用于机器学习

    cuDF:数据帧操作 cuDF提供了类似Pandas的API,用于数据帧操作,因此,如果知道如何使用Pandas,那么已经知道如何使用cuDF。...数据帧转换为cuDF数据帧(但不建议这样做): import pandas as pd import cudf df = pd.DataFrame({'a': [0, 1, 2, 3],'b': [0.1..., 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(df) 也可以做相反的事情,将cuDF数据帧转换为pandas数据帧: import cudf...一个来自Maingear公司VYBE PRO PC有两个NVIDIA TITAN RTX卡(这件事是如此美丽我害怕打开它) 在VYBER PRO PC上使用具有4,000,000行和1000列的数据集(...在使工作流程变得困难的其他软件工程挑战中,计算数据的大小和时间是两个瓶颈,这两个瓶颈使无法在运行实验时进入流程状态。

    1.9K40

    精通 Pandas 探索性分析:1~4 全

    二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色...我们逐步介绍了如何过滤 Pandas 数据帧的行,如何对此类数据帧应用多个过滤器以及如何在 Pandas 中使用axis参数。...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。...将多个数据帧合并并连接成一个 本节重点介绍如何使用 Pandas merge()和concat()方法组合两个或多个数据帧。 我们还将探讨merge()方法以各种方式加入数据帧的用法。...它仅包含在两个数据帧中具有通用标签的那些行。 接下来,我们进行外部合并。

    28.2K10

    数据科学 IPython 笔记本 7.6 Pandas 中的数据操作

    这意味着,保留数据的上下文并组合来自不同来源的数据 - 这两个在原始的 NumPy 数组中可能容易出错的任务 - 对于 Pandas 来说基本上是万无一失的。...通用函数:索引对齐 对于两个Series或DataFrame对象的二元操作,Pandas 将在执行操作的过程中对齐索引。这在处理不完整数据时非常方便,我们将在后面的一些示例中看到。...无论它们在两个对象中的顺序如何,并且结果中的索引都是有序的。...(参见“数据计算:广播”),二维数组与其中一行之间的减法是逐行应用的。...,Pandas 中的数据操作将始终维护数据上下文,这可以防止在处理原始 NumPy 数组中的异构和/或未对齐数据时,可能出现的愚蠢错误。

    2.8K10

    Pandas 秘籍:6~11

    另见 Pandas Index的官方文档 生成笛卡尔积 每当两个序列或数据帧与另一个序列或数据帧一起操作时,每个对象的索引(行索引和列索引)都首先对齐,然后再开始任何操作。.../img/00101.jpeg)] 追加来自不同数据帧的列 所有数据帧都可以向自己添加新列。...merge方法提供了类似 SQL 的功能,可以将两个数据帧结合在一起。 将新行追加到数据帧 在执行数据分析时,创建新列比创建新行更为常见。...步骤 5 显示了一个小技巧,可以动态地将新标签设置为数据帧中的当前行数。 只要索引标签与列名匹配,存储在序列中的数据也将得到正确分配。...默认情况下,concat函数使用外连接,将列表中每个数据帧的所有行保留在列表中。 但是,它为我们提供了仅在两个数据帧中保留具有相同索引值的行的选项。 这称为内连接。

    34K10

    媲美Pandas?一文入门Python的Datatable操作

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable...▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。

    7.7K50

    媲美Pandas?Python的Datatable包怎么用?

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable...▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。

    7.2K10

    媲美Pandas?Python的Datatable包怎么用?

    通过本文的介绍,你将学习到如何在大型数据集中使用 datatable 包进行数据处理,特别在数据量特别大的时候你可以发现它可能比 Pandas 更加强大。...数据读取 这里使用的数据集是来自 Kaggle 竞赛中的 Lending Club Loan Data 数据集, 该数据集包含2007-2015期间所有贷款人完整的贷款数据,即当前贷款状态 (当前,延迟...这里展示的是如何选择数据集中前5行3列的数据,如下所示: datatable_df[:5,:3] ?...▌删除行/列 下面展示如何删除 member_id 这一列的数据: del datatable_df[:, 'member_id'] ▌分组 (GroupBy) 与 Pandas 类似,datatable...▌过滤行 在 datatable 中,过滤行的语法与GroupBy的语法非常相似。下面就来展示如何过滤掉 loan_amnt 中大于 funding_amnt 的值,如下所示。

    6.7K30

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。

    7.5K30

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。

    6.7K20

    精通 Pandas:1~5

    一、Pandas 和数据分析简介 在本章中,我们解决以下问题: 数据分析的动机 如何将 Python 和 Pandas 用于数据分析 Pandas 库的描述 使用 Pandas 的好处 数据分析的动机...仅当两个数组中的全部对应元素匹配时,该值才为True。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。...有关 SQL 连接如何工作的简单说明,请参考这里。 join函数 DataFrame.join函数用于合并两个具有不同列且没有共同点的数据帧。 本质上,这是两个数据帧的纵向连接。...1741.89 1094.58 15372.80 3 2014/02/04 4031.52 1755.20 1102.84 15445.24 在这种情况下,我们看到结果是来自两个数据帧的列的组合

    19.2K10

    NumPy、Pandas中若干高效函数!

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如SQL表或Excel表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型); 其他任意形式的统计数据集...用于将一个Series中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个dict或Series。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用copy ()函数。...,基于dtypes的列返回数据帧列的一个子集。

    6.6K20

    PySpark UD(A)F 的高效使用

    这两个主题都超出了本文的范围,但如果考虑将PySpark作为更大数据集的panda和scikit-learn的替代方案,那么应该考虑到这两个主题。...3.complex type 如果只是在Spark数据帧中使用简单的数据类型,一切都工作得很好,甚至如果激活了Arrow,一切都会非常快,但如何涉及复杂的数据类型,如MAP,ARRAY和STRUCT。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...,但针对的是Pandas数据帧。...作为输入列,传递了来自 complex_dtypes_to_json 函数的输出 ct_cols,并且由于没有更改 UDF 中数据帧的形状,因此将其用于输出 cols_out。

    19.7K31

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    array([1, 8, 2, 0], dtype=int64)np.sort(x[index_val]) array([10, 12, 12, 16]) allclose() allclose() 用于匹配两个数组...Pandas 适用于以下各类数据: 具有异构类型列的表格数据,如 SQL 表或 Excel 表; 有序和无序 (不一定是固定频率) 的时间序列数据; 带有行/列标签的任意矩阵数据(同构类型或者是异构类型...用于将一个 Series 中的每个值替换为另一个值,该值可能来自一个函数、也可能来自于一个 dict 或 Series。...当一个数据帧分配给另一个数据帧时,如果对其中一个数据帧进行更改,另一个数据帧的值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 的列返回数据帧列的一个子集。

    6.3K10

    使用SQLAlchemy将Pandas DataFrames导出到SQLite

    本教程介绍了如何从CSV文件加载pandas DataFrame,如何从完整数据集中提取一些数据,然后使用SQLAlchemy将数据子集保存到SQLite数据库 。...从原始数据帧创建新的数据帧 我们可以使用pandas函数将单个国家/地区的所有数据行匹配countriesAndTerritories到与所选国家/地区匹配的列。...', echo=True) sqlite_connection = engine.connect() 我们设置echo=True为查看来自数据库连接的所有输出。...然后to_sql 在save_df对象上调用该方法时使用该变量,这是我们的pandas DataFrame,它是原始数据集的子集,从原始7320中筛选出89行。...您应该看一下“ 通过研究COVID-19数据学习熊猫” 教程,以了解有关如何从较大的DataFrame中选择数据子集的更多信息,或者访问pandas页面,以获取Python社区其他成员提供的更多教程。

    4.8K40

    matplotlib秘技:让可视化图形动起来

    如果你的下一次演示或者下一篇博客文章,能用动态图形展示数据的发展,该有多好?更妙的是,你可以继续使用matplotlib、seaborn或者其他你喜欢用的库。...我最近为一部关于美国的阿片样物质危机的纪录片制作了一些动态图形,所以我会在这篇文章中使用相关的数据。...数据来自美国国家药物滥用研究所和CDC的公开数据,可以从以下网址下载:https://www.drugabuse.gov/sites/default/files/overdose_data_1999-2015...我还编写了一个辅助函数,可以从感兴趣的行加载数据,之后绘图会用到。...这里i表示动画帧的索引。你可以选择在i帧中可见的数据范围。之后我使用seaborn的线图绘制选定数据。最后两行我调整了一些尺寸,使图形看起来更美观。

    1.3K20
    领券