首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PyTorch张量创建方法选择 | Pytorch系列(五)

文 |AI_study 欢迎回到PyTorch神经网络编程系列。在这篇文章,我们将仔细研究将数据转换成PyTorch张量主要方法之间区别。 ?...在上一篇文章Pytorch张量讲解 | Pytorch系列(四)》,我们了解了如何使用Python列表、序列和NumPy ndarrays等数据在PyTorch创建张量。...与复制数据相比,共享数据更高效,占用内存更少,因为数据不是写在内存两个位置。...在PyTorch创建张量最佳选择 考虑到所有这些细节,这两个是最佳选择: torch.tensor() torch.as_tensor() torch.tensor() 调用是一种 go-to 调用...总结: 至此,我们现在应该对PyTorch张量创建选项有了更好了解。我们已经了解了工厂函数,并且了解了内存共享与复制如何影响性能和程序行为。

1.9K41
您找到你想要的搜索结果了吗?
是的
没有找到

Pytorch 5 个非常有用张量操作

PyTorch是一个基于Python科学包,用于使用一种称为张量特殊数据类型执行高级操作。张量是具有规则形状和相同数据类型数字、向量、矩阵或多维数组。...PyTorch是NumPy包另一种选择,它可以在GPU下使用。它也被用作进行深度学习研究框架。 ?...例如,在一个2D张量,使用[:,0:5]选择列0到5所有行。同样,可以使用torch.narrow(1,0,5)。然而,在高维张量,对于每个维度都使用range操作是很麻烦。...在每个张量值上检查条件(在条件中使用),如果为真,就用第一个张量相同位置值代替,如果为假,就用第二个张量相同位置值代替。...这里,它检查张量a值是否是偶数。如果是,则用张量b值替换,b值都是0,否则还是和原来一样。 此函数可用于设定阈值。如果张量值大于或小于某一数值,它们可以很容易地被替换。 - EOF -

2.3K41

CNN张量输入形状和特征图 | Pytorch系列(三)

卷积神经网络 在这个神经网络编程系列,我们正在努力构建卷积神经网络(CNN),所以让我们看看在CNN张量输入。 ? 在前两篇文章,我们介绍了张量张量基本属性——阶、轴和形状。...如果我们了解这些特征每一个以及它们在张量轴位置,那么我们就可以对张量数据结构有一个很好总体理解。 为了分解这个,我们将从后往前推敲,考虑从右到左轴。...对于图像而言,原始数据以像素形式出现,像素由数字表示,并使用两个维尺寸(高度和宽度)进行排列。 图片高和宽 为了表示两个维度,我们需要两个轴。 ? 图像高度和宽度在最后两个轴上表示。...给定一个代表一批图片张量(类似于上面),我们能使用四个索引定位到一批图片中特定图片特定通道特定像素值。 输出通道和特征图 让我们看一下在通过卷积层转换后,张量颜色通道轴是如何变化解释。...总结 现在我们应该很好地理解了CNN输入张量整体形状,以及阶、轴和形状概念是如何应用。 当我们开始构建CNN时,我们将在以后文章中加深对这些概念理解。在那之前,我们下期再见!

3.4K30

Python基于匹配子列表列表串联

正常我们在使用python爬虫时候,尤其在用python开发时,想要基于匹配将子列表串联成一个列表,我们可以使用列表推导式或循环来实现,这两种方法都可以根据匹配将子列表串联成一个列表。...目标是将键区域匹配子列表进行合并,并将合并后子列表几何形状和名称字段组合成一个字符串。...2、解决方案以下代码实现了基于匹配子列表列表串联:import itertools​def merge_sublists(sublists): """ 合并具有相同键区域子列表。​..."指的是根据某些条件或标准将两个列表子列表进行连接或组合。...具体来说,假设有两个列表,一个是主列表,其中包含多个子列表;另一个是匹配列表,包含一些与主列表子列表相关。现在目标是,根据匹配列表,将主列表相应子列表连接或组合成一个新列表。

10810

深度学习关于张量阶、轴和形状解释 | Pytorch系列(二)

文 |AI_study 今天是《高效入门Pytorch第二篇文章,上一篇我们讲解到《张量解释——深度学习数据结构》。 在这篇文章,我们将深入研究张量,并介绍三个基本张量属性,阶,轴和形状。...注意,在PyTorch张量大小和形状是一样。 3 x 3形状告诉我们,这个2阶张量每个轴长度都是3,这意味着我们有三个沿着每个轴可用索引。现在让我们看看为什么张量形状如此重要。...重构(reshape)张量 在我们研究 reshape 张量之前,请回想一下开始重构之前,我们是如何使用下面术语列表: Shape 6 x 1 number scalar array vector 2d-array...,形状分量值乘积必须等于张量中元素总数。...很快,我们将看到在PyTorch创建张量各种方法。 文章内容都是经过仔细研究,本人水平有限,翻译无法做到完美,但是真的是费了很大功夫。

3K40

使用VBA查找并在列表框显示找到所有匹配

标签:VBA,用户窗体,列表框 有时候,我们想从数据表搜索指定内容,但匹配往往不只一,而我们想要将匹配全部显示出来,如下图1所示。...图1 在Excel,有很多方法可以实现,这里使用用户窗体和VBA代码来完成。 示例数据如下图2所示。 图2 单击“查找”按钮,弹出我们所设计用户窗体如下图3所示。...,即如果某人正在搜索位置,则仅在位置列搜索 With Range("Table1[" &SearchColumn & "]") ' 查找第一个匹配 Set RecordRange...FirstAddress = RecordRange.Address RowCount = 0 Do ' 设置匹配值行第一个单元格...Results.AddItem Results.List(RowCount, 0) = "没有找到" End If End With End Sub 代码

13K30

如何更新 package.json 依赖

在一个项目中,其包依赖列表保存在 package.json 文件。每个已安装包都被分配了一个版本号,一般由 三部分组成:major.minor.patch 。...红色意味着匹配到了一个比 package.json 定义 SemVer 需求还要新已安装版本;黄色表示仓库中有比 SemVer 需求更新版本。...npm install 会安装一个包及其依赖任何包。如果该包存在 package-lock 或 shrinkwrap 文件(在并存时后者优先级更高),将会按其进行依赖安装。...在主版本变动频繁并带来破坏性改变情形下,这种 update 策略是很有意义,同时需要谨慎对待。 那么,如果就是想升级 major 版本该如何呢?...现在,package.json 依赖就被升级到最新了,包括 major 位更新: ? 剩下就简单了。运行 npm install 或 npm update 以完成升级。

4.9K10

找出字符串第一个匹配下标

给你两个字符串 haystack 和 needle ,请你在 haystack 字符串找出 needle 字符串第一个匹配下标(下标从 0 开始)。...如果 needle 不是 haystack 一部分,则返回  -1 。...示例 1: 输入:haystack = "sadbutsad", needle = "sad" 输出:0 解释:"sad" 在下标 0 和 6 处匹配。 第一个匹配下标是 0 ,所以返回 0 。...提示: 1 <= haystack.length, needle.length <= 104 haystack 和 needle 仅由小写英文字符组成 我们可以让字符串 与字符串 所有长度为 子串均匹配一次...为了减少不必要匹配,我们每次匹配失败即立刻停止当前子串匹配,对下一个子串继续匹配。如果当前子串匹配成功,我们返回当前子串开始位置即可。如果所有子串都匹配失败,则返回 −1。

28520

PyTorch入门笔记-创建已知分布张量

mean 和 std 参数两个张量形状不一定要匹配,但是这两个张量元素总个数必须相等,「这里需要注意此时两个张量元素总个数必须相等不仅仅包括显式相等,还包含隐式相等。」...「虽然传入两个张量元素总个数不相等,但是通过 PyTorch 广播机制可以将符合广播机制张量扩展成相同元素总个数两个张量;」 >>> import torch >>> # 传入mean和std...形状不匹配 >>> # 2. 两个张量元素个数显式相等 >>> normal_a = torch.normal(mean = torch.full([1, 4], 0.)...PyTorch 官方文档强调:"当输入参数 mean 和 std 张量形状不匹配时候,输出张量形状由传入 mean 参数张量形状所决定。"...代码段,「这是因为当传入两个张量形状不匹配,但是元素总个数相等情况下,PyTorch 会使用 reshape 函数将传入参数 std 张量形状改变成和传入 mean 参数张量相同形状,这可能会引发一些问题

3.5K30

PyTorch 1.3 —新增功能?

当运算符应用于命名张量时(对于二进制运算符,任何一个或两个命名张量)将隐式检查某些维名称在运行时是否匹配。这为错误提供了额外安全性。...这些规则与numpy或PyTorch尺寸广播规则非常相似。引用官方PyTorch文档: 如果两个名称相等(字符串相等),或者至少一个为,则两个名称匹配None。...PyTorch利用了两个运营商- match和unify 为名称传播。 match 与上面定义运算符相同,它检查两个命名张量是否可以匹配。...unify是一个运算符,用于确定应将两个输入张量名称哪一个传播为结果张量。引用官方PyTorch文档: unify(A, B)确定哪个名称A并将B其传播到输出。...如果两个名称匹配,则返回两个名称更具体一个。如果名称不匹配,则错误。

3.2K30

算法金 | 这次终于能把张量(Tensor)搞清楚了!

PyTorch 张量操作与应用2.1 创建 PyTorch 张量PyTorch 提供了多种创建张量方法,最基础是使用 torch.tensor() 函数,它可以将 Python 列表或 NumPy...PyTorch 张量都有其数据类型(dtype)、形状(shape)和存储设备(device),这些属性定义了张量如何存储和操作数据。...,通过自动扩展较小张量匹配较大张量形状。...# 创建两个形状不同张量a = torch.ones((3, 1))b = torch.ones((1, 5))# 使用广播机制进行加法2.5 张量索引与切片索引和切片是访问和修改张量特定元素基本操作...with torch.no_grad(): # 执行一些不需要梯度大规模操作 large_tensor_operation()4.3 调试与错误处理调试张量操作错误是深度学习开发重要技能

10800

在Excel如何匹配格式化为文本数字

标签:Excel公式 在Excel,如果数字在一个表中被格式化为数字,而在另一个表中被格式化为文本,那么在尝试匹配或查找数据时,会发生错误。 例如,下图1所示例子。...图1 在单元格B6以文本格式存储数字3,此时当我们试图匹配列B数字3时就会发生错误。 下图2所示是另一个例子。 图2 列A中用户编号是数字,列E是格式为文本用户编号。...图3 为了成功地匹配数据,我们应该首先获取要匹配数字,并以数据源格式对其进行格式化。在这个示例,可以借助TEXT函数来实现,如下图4所示。...图7 这里成功地创建了一个只包含数字新文本字符串,在VALUE函数帮助下将该文本字符串转换为数字,然后将数字与列E值进行匹配。...图8 这里,我们同样成功地创建了一个只包含数字新文本字符串,然后在VALUE函数帮助下将该文本字符串转换为数字,再将我们数字与列E值进行匹配

5.2K30

还不会使用PyTorch框架进行深度学习小伙伴,看过来

Pytorch 张量 Pytorch Autograd 机制 Pytorch nn 模块 Pytorch optim 包 Pytorch 自定义 nn 模块 总结和延伸阅读 何为深度学习?...Pytorch两个主要特点: 利用强大 GPU 加速进行张量计算(如 NumPy) 用于构建和训练神经网络自动微分机制 相较于其它 Python 深度学习库,Pytorch 有何优势?...PyTorch 允许你定义两种类型张量,即 CPU 和 GPU 张量。在本教程,假设你运行是使用 CPU 进行深度学习运算机器,但我也会向你展示如何在 GPU 定义张量: ?...如果张量包含多个元素,你需要指定一个规模(shape)相匹配张量梯度。 例如,你可以创建两个张量,将其中一个张量「requires_grad」设定为 True,将另一个设定为 False。...接着你可以用这两个张量来执行加法和求和运算。然后你可以计算其中一个张量梯度。 ? 在「b」上调用「.grad」返回值为空,因为你没有将它「requires_grad」设置为 True。

1.6K20

PyTorch傅立叶卷积:通过FFT有效计算大核卷积数学原理和代码实现

PyTorch实现 现在,我将演示如何PyTorch实现傅立叶卷积函数。它应该模仿torch.nn.functional.convNd功能,并在实现利用FFT,而无需用户做任何额外工作。...最后我们也会提供github代码库。在该存储库,我实现了通用N维傅立叶卷积方法。 1 填充输入阵列 我们需要确保填充后信号和内核大小相同。将初始填充应用于信号,然后调整填充以使内核匹配。...这有两个原因。 (1)PyTorch卷积在多维张量上运行,因此我们信号和内核张量实际上是三维。...从PyTorch文档该方程式,我们看到矩阵乘法是在前两个维度上执行(不包括偏差): 我们需要包括此矩阵乘法以及转换后维度上直接乘法。...因为我们不需要创建一个全新张量,所以这大大加快了存储效率。(本文末尾附录包含了如何/为什么这样做简要演示。) # 3.

3K10
领券