首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

选择与开发内容相匹配的工具,常常会使我们事半功倍。但面对人工智能的多个领域,如:机器学习、深度学习、NLP等等,多样的工具有时也让我们也无从选择。...十三、BERT star 21.3k  fork 5.8k BERT 是一个基于双向 Transformer 的大规模预训练语言模型,用于对大量未标记的文本数据进行预训练,以学习一种语言表示形式,...H2O 包括一个自动机器学习模块,使用自己的算法来构建管道。它对特征工程方法和模型超参数采用了穷举搜索,优化了管道。...H2O 自动化了一些最复杂的数据科学和机器学习工作,例如特征工程、模型验证、模型调整、模型选择 和 模型部署。除此之外,它还提供了自动可视化以及机器学习的解释能力(MLI)。...是一个开源项目,允许用户和机器学习库开发人员可以对其进行扩展。 MLflow 现 alpha 版,提供跟踪、项目和模型三大组件。MLflow 的跟踪组件支持记录和查询实验数据,如评估度量指标和参数。

86710

使用Kafka在生产环境中构建和部署可扩展的机器学习

您可以利用实时信息(如基于位置的数据,支付数据),还可以利用历史数据(如CRM或Loyalty平台的信息)为每位客户提供最佳报价。 .预测性维护:关联机器大数据以预测故障发生之前。...用H2O.ai开发一个分析模型 以下显示了使用H2O构建分析模型的示例:一个开源机器学习框架,它利用Apache Spark或TensorFlow等其他框架。...数据科学家可以使用他或她最喜欢的编程语言,如R,Python或Scala。 最大的好处是H2O引擎的输出:Java代码。 生成的代码通常表现非常好,可以使用Kafka Streams轻松缩放。...用H2O的R库建立分析模型 他的输出是一个分析模型,生成为Java代码。 这可以在关键任务生产环境中无需重新开发的情况下使用。...例如,即使数据科学家使用R或Python来训练模型,该模型也会生成Java字节码。 .外部服务器:使用SAS,MATLAB,KNIME或H2O等分析工具,通过请求响应调用外部分析服务器。

1.3K70
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

    选择与开发内容相匹配的工具,常常会使我们事半功倍。但面对人工智能的多个领域,如:机器学习、深度学习、NLP等等,多样的工具有时也让我们也无从选择。...十三、BERT star 21.3k  fork 5.8k BERT 是一个基于双向 Transformer 的大规模预训练语言模型,用于对大量未标记的文本数据进行预训练,以学习一种语言表示形式,...H2O 包括一个自动机器学习模块,使用自己的算法来构建管道。它对特征工程方法和模型超参数采用了穷举搜索,优化了管道。...H2O 自动化了一些最复杂的数据科学和机器学习工作,例如特征工程、模型验证、模型调整、模型选择 和 模型部署。除此之外,它还提供了自动可视化以及机器学习的解释能力(MLI)。...是一个开源项目,允许用户和机器学习库开发人员可以对其进行扩展。 MLflow 现 alpha 版,提供跟踪、项目和模型三大组件。MLflow 的跟踪组件支持记录和查询实验数据,如评估度量指标和参数。

    73610

    自动化建模 | H2O开源工具介绍

    H2O简介 H2O.ai是初创公司Oxdata于2014年推出的一个独立开源机器学习平台,它的主要服务对象是数据科学家和数据工程师,主要功能就是为App提供快速的机器学习引擎。...3、引入、查看、整理数据集 下面通过H2O引入并查看一个用来训练的数据集,该数据集为电商场景的二分类数据,特征包括一些用户RFM、浏览、加购等信息,y为用户是否会在之后7天内下单购物。 ?...若没有设置好模型个数上线或最长训练时间,可能会出现跑了很久依然没有结束的情况。 同时可以看到一旦开始了自动建模,H2O很友好地提供了一个进度条来帮助查看建模进度。 ?...但是H2O提供了一个非常好的模型部署流程,它一方面支持用户像sklearn那样将一个模型文件下载到本地,又支持用户进行POJO或者MOJO文件的下载。...后 记 京东数科运营决策团队基于大数据环境,结合丰富的业务场景,利用机器学习专业技术,不断挖掘海量数据中蕴含的丰富信息,我们已将一系列机器学习模型应用到多个领域中,并且坚持在算法深度的道路上持续探索,致力于对未知信息和事件做出更精准预测

    5.7K41

    2020 年最具潜力 44 个顶级开源项目,涵盖 11 类 AI 学习框架、平台(值得收藏)

    选择与开发内容相匹配的工具,常常会使我们事半功倍。但面对人工智能的多个领域,如:机器学习、深度学习、NLP等等,多样的工具有时也让我们也无从选择。...十三、BERT star 21.3k  fork 5.8k BERT 是一个基于双向 Transformer 的大规模预训练语言模型,用于对大量未标记的文本数据进行预训练,以学习一种语言表示形式,...H2O 包括一个自动机器学习模块,使用自己的算法来构建管道。它对特征工程方法和模型超参数采用了穷举搜索,优化了管道。...H2O 自动化了一些最复杂的数据科学和机器学习工作,例如特征工程、模型验证、模型调整、模型选择 和 模型部署。除此之外,它还提供了自动可视化以及机器学习的解释能力(MLI)。...是一个开源项目,允许用户和机器学习库开发人员可以对其进行扩展。 MLflow 现 alpha 版,提供跟踪、项目和模型三大组件。MLflow 的跟踪组件支持记录和查询实验数据,如评估度量指标和参数。

    1.3K20

    碎片︱R语言与深度学习

    H2O可能更适合集群环境,数据科学家们可以在一个简单的条件下用它来做数据挖掘和探索。当更关注灵活性和原型设计的时候,MXNetR可能是最佳的选择。.../) H2O是基于大数据的统计分析 机器学习和数学库包,让用户基于核心的数学积木搭建应用块代码,采取类似R语言 Excel或JSON等熟悉接口,使的BigData爱好者和专家可以利用一系列简单的先进算法对数据集进行探索...数据收集是很容易,但是决策是很难的。 H2O使得能用更快更好的预测模型源实现快速和方便地数据的挖掘。 H2O愿意将在线评分和建模融合在一个单一平台上。 2、实践 1....,多个cpu使用率几乎是100%,风扇狂响。...该方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。 2.

    1.7K51

    业界 | 现代「罗塞塔石碑」:微软提出深度学习框架的通用语言

    训练时间(s):CNN(VGG-style,32bit)在 CIFAR-10 上执行图像识别任务 该模型的输入是标准 CIFAR-10 数据集(包含 5 万张训练图像和 1 万张测试图像),均匀地分成...训练时间(s):RNN (GRU) 在 IMDB 数据集上执行情感分析任务 模型输入为标准 IMDB 电影评论数据集(包含 25k 训练评论和 25k 测试评论),均匀地分为两类(积极/消极)。...由于相同的模型架构和数据被用于每一个框架,因此得到的模型准确率在各个框架之间是非常相似的(实际上,这正是我们测试代码以确保相同的模型在不同框架上运行的一种方法)。...该 repo 只是为了展示如何在不同的框架上构建相同的网络,并对这些特定的网络评估性能。...相比之下,我们今天发布的 repo 1.0 完整版更像是深度学习框架的罗塞塔石碑,在不同的框架上端到端地展示模型构建过程。

    1.1K40

    H2OAutoML入门

    H2OAutoML入门引言机器学习是人工智能领域的一个重要分支,它通过建立数学模型,使计算机能够从数据中自动学习并进行预测和决策。...()安装其他依赖库(如pandas、numpy等)以进行数据预处理和特征工程。...首先,我们需要准备房价数据集,该数据集包含房屋的各种特征(如面积、卧室数量、浴室数量等)以及对应的价格。...然后,我们按照7:1.5:1.5的比例划分数据集为训练集、验证集和测试集。 接下来,使用H2OAutoML构建机器学习模型,设置最大模型数量和随机种子等参数。 然后,执行自动机器学习训练和调参过程。...它提供了一组算法和工具,可以自动执行数据预处理、特征选择和模型训练等任务。AutoML通过使用Google Cloud AutoML等组件来简化和加速机器学习模型的开发和部署。

    55120

    h2oGPT——具备文档和图像问答功能且100%私密且可商用的大模型

    前言 这里直接选用h2oGPT的论文摘要部分:建立在大型语言模型 (LLM) 之上的应用程序,如 GPT-4,由于其在自然语言处理方面的人类水平的能力,代表着人工智能的一场革命。...和 Windows 使用轻量级、柔和色彩的界面与猫图片进行对话: 带有 H2O.ai 颜色的暗黑模式: Apache V2 数据准备代码、训练代码和模型 •支持多种模型(h2oGPT、WizardLM...,确保事实正确性,最小化虚构现象,并避免重复输出•添加其他工具,如搜索功能•添加用于 SQL 和 CSV 问答的代理 入门指南 首先,您需要一个 Python 3.10 环境。...我们在 H2O.ai[54] 的创造者们构建了多个世界一流的机器学习、深度学习和人工智能平台: •面向企业的 #1 开源机器学习平台 H2O-3[55]•全球最佳的自动机器学习平台 H2O Driverless...•偏见和冒犯性内容:大型语言模型是基于各种互联网文本数据训练的,其中可能包含偏见、种族主义、冒犯性或其他不适当的内容。通过使用该模型,您承认并接受生成的内容有时可能存在偏见,或产生冒犯或不适当的内容。

    1K40

    全自动化机器学习建模!效果吊打初级炼丹师! ⛵

    它让数据科学家、分析师和开发人员轻松构建具有高规模、高效率和生产力的机器学习模型,同时保持模型质量。常规的机器学习模型开发应用,需要大量时间来构建和比较若干个不同模型。...它也是一个端到端的机器学习和模型管理工具,可以成倍地加快实验周期,提升工作开发效率。...://pycaret.gitbook.io/docs/get-started/tutorials图片 H2O AutoMLH2O AutoML是另一个很有名的自动化机器学习库,可以帮助我们在有限的时间内自动训练和调优许多模型...图片H2O AutoML 的设计理念是,希望尽量自动化,即用户只需要给定数据集和极少量的参数,即可开始建模和调优,并在指定的时间或者其他约束条件下,尽量找到最佳的模型。...Python 库,可以训练多个模型并自动识别最佳超参数。

    1.4K31

    开发 | Facebook、微软联合推出​ ONNX 标准,号称要解决开发框架碎片化

    ONNX 所针对的,可以说是深度学习开发生态中最关键的问题之一: 开发框架的碎片化。 在任意一个框架上训练的神经网络模型,无法直接在另一个框架上用。...开发者需要耗费大量时间精力把模型从一个开发平台移植到另一个。 借助 ONNX,开发者能把在 PyTorch 上训练的模型直接拿到 Caffe2 上进行推理。...ONNX 的工作原理是: 实时跟踪某个神经网络是如何在这些框架上生成的,接着,使用这些信息创建一个通用的计算图,即符合ONNX 标准的计算图。...每个计算数据流图以节点列表的形式组织起来,构成一个非循环的图。节点有一个或多个的输入与输出。每个节点都是对一个运算器的调用。图还会包含协助记录其目的、作者等信息的元数据。...运算器在图的外部实现,但那些内置的运算器可移植到不同的框架上。每个支持 ONNX 的框架将在匹配的数据类型上提供这些运算器的实现。

    97940

    机器学习框架简述

    H2O是用于数据收集、模型构建以及服务预测的端对端解决方案。例如,可以将模型导出为Java代码,这样就可以在很多平台和环境中进行预测。...这个平台也包含一个开源的、基于web的、在H2O中称为Flow的环境,它支持在训练过程中与数据集进行交互,而不只是在训练前或者训练后。...Singa是一个Apache的孵化器项目,也是一个开源框架,作用是使在大规模数据集上训练深度学习模型变得更简单。...Google的TensorFlow 与微软的DMTK很类似,Google TensorFlow 是一个机器学习框架,旨在跨多个节点进行扩展。...许多标准的深度学习模型,如LSTM、AlexNet和GoogLeNet,都可以作为Neon的预训练模型。最新版本Neon 2.0,增加了英特尔数学内核库来提高CPU的性能。

    75620

    有助于你掌握机器学习的十三个框架

    H2O 是用于数据收集、模型构建以及服务预测的端对端解决方案。例如,可以将模型导出为 Java 代码,这样就可以在很多平台和环境中进行预测。...这个平台也包含一个开源的、基于 web 的、在 H2O 中称为Flow 的环境,它支持在训练过程中与数据集进行交互,而不只是在训练前或者训练后。...Singa 是一个 Apache 的孵化器项目,也是一个开源框架,作用是使在大规模数据集上训练深度学习模型变得更简单。...TensorFlow 与微软的 DMTK 很类似,Google TensorFlow 是一个机器学习框架,旨在跨多个节点进行扩展。...许多标准的深度学习模型,如 LSTM、AlexNet 和 GoogLeNet,都可以作为 Neon 的预训练模型。最新版本 Neon 2.0,增加了英特尔数学内核库来提高 CPU 的性能。

    73440

    Quant值得拥有的AutoML框架

    自动机器学习,也称为 AutoML,是将机器学习应用于实际问题的端到端过程自动化的过程。典型的机器学习过程包括几个步骤,包括数据的摄取和预处理、特征工程、模型训练和部署。...自动机器学习工具(automatic machine learning)旨在自动化这些机器学习的一个或多个阶段,使非专家更容易建立机器学习模型,同时消除重复性任务,使经验丰富的机器学习工程师能够更快地建立更好的模型...整个过程是通过一个图形用户界面数据库来完成的,这使得即使是一个数据科学家新手也很容易立即就能有所作为。 高度可定制: 可以上传自己的模型,Transformers和Scorers。...可配置性不如H2O Driverless AI 模型可视化的缺失导致很难进行模型的迭代 H2O-3 开源版本的 H2O。...与其他开源 AutoML 解决方案相比,它具有高度的可配置性。 包含模型可解释性接口,使用一个函数就可以生成了多个可解释性的方法并进行可视化。

    1.3K50

    了解自动化机器学习 AutoML

    AutoML 的核心组件包括:数据预处理、特征工程、模型选择、模型训练与超参数优化以及模型部署与推理。...使用算法如网格搜索、随机搜索、贝叶斯优化等自动找到最佳的模型参数。 模型部署与推理:自动化将训练好的模型部署到生产环境。...AutoX 是一个高效的自动化机器学习工具,主要特点包括在多个 Kaggle 数据集上表现出色、简单易用、适用于分类和回归问题、全自动的数据清洗和模型调参等。...H2O AutoML 的 AutoML 功能通过自动化训练和调整多个模型的过程,简化了机器学习流程。虽然使用这些工具不需要深厚的数据科学背景,但要生成高性能的机器学习模型仍然需要一定的知识和背景。...AutoML 不仅适用于非专家,也为高级用户提供了便利,通过提供一个简单的包装函数执行多个建模相关任务,节省了时间,让他们可以专注于数据预处理、特征工程和模型部署等其他数据科学流程任务。

    40800

    HOVER:人形机器人的多功能神经网络全身控制器

    现有方法通常为每个控制模式单独训练策略,导致控制器缺乏通用性。HOVER通过引入运动模仿和策略蒸馏技术,将多个控制模式整合到一个统一策略中,实现了跨模式的技能共享与无缝切换。...· 策略蒸馏优化:通过从“Oracle策略”(基于大规模人类运动数据训练的模仿策略)中蒸馏知识,HOVER在多个控制模式上的性能均优于独立训练的专家策略。...3.3 运动重定向与Oracle策略训练 HOVER中另一个重要组成部分是动作重定向过程,这是将大规模人体动作数据集转化为适合人形机器人的动作数据集的关键步骤。...; 最后,采用梯度下降法将AMASS数据集中对应的关节点匹配到拟合后的SMPL模型和人形机器人之间,完成动作数据集的重定向。...相关工作与创新点 5.1 现有研究对比 · 经典方法:如Atlas的模型预测控制(MPC)依赖精确动力学模型,难以适应多任务。 · 学习型方法:ExBody、H2O等专注于单一模式,缺乏通用性。

    10110

    【前沿聚焦】机器学习的未来版图:从自动化到隐私保护的技术突破

    然而,伴随技术的发展,新的问题和需求不断涌现,例如模型自动化、多模态数据处理和隐私保护。本文将围绕这些挑战,探讨三大前沿技术的原理、价值与未来发展方向。...AutoML 的技术组件特征工程自动化:通过特征选择与生成算法,优化数据输入。超参数优化:使用网格搜索、贝叶斯优化等方法调节模型参数。模型选择与组合:在多种模型中自动选择最佳方案。...示例代码:使用 H2O AutoML以下代码展示了如何使用 H2O AutoML 训练分类模型:import h2ofrom h2o.automl import H2OAutoMLfrom h2o.frame...多模态学习什么是多模态学习多模态学习旨在处理包含多种数据类型(如文本、图像、音频)的任务。其核心挑战在于如何融合和利用不同模态的信息。常见方法模态对齐:通过对不同模态的特征对齐,实现信息融合。...联邦学习什么是联邦学习联邦学习是一种保护隐私的分布式机器学习方法。其核心思想是将模型训练分布在多个节点,数据本地化存储。技术优势数据隐私保护:敏感数据无需集中存储。资源高效利用:利用多节点的计算能力。

    12600

    2015 Bossie评选:最佳开源大数据工具

    使用H2O的最佳方式是把它作为R环境的一个大内存扩展,R环境并不直接作用于大的数据集,而是通过扩展通讯协议例如REST API与H2O集群通讯,H2O来处理大量的数据工作。...几个有用的R扩展包,如ddply已经被打包,允许你在处理大规模数据集时,打破本地机器上内存容量的限制。你可以在EC2上运行H2O,或者Hadoop集群/YARN集群,或者Docker容器。...Drill专为嵌套数据的低延迟分析设计,它有一个明确的设计目标,灵活的扩展到10000台服务器来处理查询记录数据,并支持兆级别的数据记录。...嵌套的数据可以从各种数据源获得的(如HDFS,HBase,Amazon S3,和Blobs)和多种格式(包括JSON,Avro,和buffers),你不需要在读取时指定一个模式(“读时模式”)。...其数据回溯特性允许用户查看一个对象如何在系统间流转,回放以及可视化关键步骤之前之后发生的情况,包括大量复杂的图式转换,fork,join及其他操作等。

    1.6K90

    自动机器学习工具全景图:精选22种框架,解放炼丹师

    该函数库常用来处理实际问题中的分类变量,如可能带高变量基数的问题。它还能直接与pandas数据帧共用、计算缺失值和处理可能在训练集之外的变换值。 4....它结合了许多先进算法,如Hyperband算法(最低限度地训练模型来确定超参数的影响)、基于群体的训练算法(Population Based Training,在共享超参数下同时训练和优化一系列网络)、...它的优势在于能够在单个GUI界面中管理多个机器学习模型的训练、执行和评估。 它具有多个集成工具来组合这些模型,以实现最佳性能。...、特征预处理器和分类器,并把多个步骤经过训练后整合成一个完整模型。...TPOT的优势在于其独特的优化方法,可以提供更有效的优化流程。 它还包括一个能把训练好的流程直接转换为代码的工具,这对希望能进一步调整生成模型的数据科学家来说是一个主要亮点。

    1.1K40

    【陆勤践行】机器学习开源项目

    这些模型都是应用领域的热点,也是研究者们最需要的。 Scikit-learn Scikit-learn是一个非常强大的Python机器学习工具包。...它包括了一系列的对图像和音频的机器学习算法,如人脸检测、SIFT拼接等等。同时,Accord支持移动对象的实时跟踪等功能。它提供了一个从神经网络到决策树系统的机器学习库。...H2O H2O是0xdata的旗舰产品,是一款核心数据分析平台。它的一部分是由R语言编写的,另一部分是由Java和Python语言编写的。...Oryx能够让机器学习的模型使用在实时的数据流上,如垃圾邮件过滤等。 GoLearn GoLearn是谷歌所构建的Go语言的一体化机器学习库,目标是简单并且可定制。...ConvNetJS ConvNetJS是一款基于JavaScript的在线深度学习库,它提供了在线的深度学习训练方式。

    76270
    领券