首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在包含分类变量的Pandas数据帧中仅降低数值列的值?

在包含分类变量的Pandas数据帧中仅降低数值列的值,可以通过以下步骤实现:

  1. 首先,筛选出数据帧中的数值列。可以使用select_dtypes方法来选择数值列,该方法接受参数include='number'
代码语言:txt
复制
numeric_cols = df.select_dtypes(include='number').columns
  1. 然后,使用apply方法对筛选后的数值列进行操作。可以传入一个自定义函数,该函数会对每个数值列进行处理。在该函数中,判断列是否为分类变量,若不是,则降低该列的值。
代码语言:txt
复制
def decrease_numeric_values(col):
    if col.name not in categorical_cols:
        return col * 0.9  # 降低值的操作,此处以降低10%为例
    return col

df[numeric_cols] = df[numeric_cols].apply(decrease_numeric_values)
  1. 最后,数据帧中的数值列的值已经被降低,而分类变量的列保持不变。

这种方法适用于对包含分类变量和数值变量的数据帧进行处理,只降低数值列的值,而保持分类变量的列不受影响。

腾讯云提供了一系列与云计算相关的产品,如云服务器、云数据库、人工智能等。具体可以参考腾讯云官方文档获取更多产品信息:

请注意,由于您要求不提及特定的云计算品牌商,以上答案未包含产品介绍链接地址。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...然后,我们在数据帧后附加了 2 列 [“罢工率”、“平均值”]。 “罢工率”列的列值作为系列传递。“平均值”列的列值作为列表传递。列表的索引是列表的默认索引。

28030

Python入门之数据处理——12种有用的Pandas技巧

翻译:黄念 校对:王方思 小编和大伙一样正在学习Python,在实际数据操作中,列联表创建、缺失值填充、变量分箱、名义变量重新编码等技术都很实用,如果你对这些感兴趣,请看下文: ◆ ◆ ◆ 引言...在利用某些函数传递一个数据帧的每一行或列之后,Apply函数返回相应的值。该函数可以是系统自带的,也可以是用户定义的。举个例子,它可以用来找到任一行或者列的缺失值。 ? ?...# 8–数据帧排序 Pandas允许在多列之上轻松排序。可以这样做: ? ? 注:Pandas的“排序”功能现在已不再推荐。我们用“sort_values”代替。...数值类型的名义变量被视为数值 2. 带字符的数值变量(由于数据错误)被认为是分类变量。 所以手动定义变量类型是一个好主意。如果我们检查所有列的数据类型: ? ?...加载这个文件后,我们可以在每一行上进行迭代,以列类型指派数据类型给定义在“type(特征)”列的变量名。 ? ? 现在的信用记录列被修改为“object”类型,这在Pandas中表示名义变量。

5K50
  • 机器学习中处理缺失值的7种方法

    ---- 用平均值/中位数估算缺失值: 数据集中具有连续数值的列可以替换为列中剩余值的平均值、中值或众数。与以前的方法相比,这种方法可以防止数据丢失。...「缺点」: 仅适用于数值连续变量。 不考虑特征之间的协方差。 ---- 分类列的插补方法: 如果缺少的值来自分类列(字符串或数值),则可以用最常见的类别替换丢失的值。...通过添加唯一类别来消除数据丢失 「缺点」: 仅适用于分类变量。...---- 缺失值预测: 在前面处理缺失值的方法中,我们没有利用包含缺失值的变量与其他变量的相关性优势。使用其他没有空值的特征可以用来预测丢失的值。...安装datawig库 pip3 install datawig Datawig可以获取一个数据帧,并为每一列(包含缺失值)拟合插补模型,将所有其他列作为输入。

    7.9K20

    Pandas 秘籍:1~5

    数据帧的数据(值)始终为常规字体,并且是与列或索引完全独立的组件。 Pandas 使用NaN(不是数字)来表示缺失值。 请注意,即使color列仅包含字符串值,它仍使用NaN表示缺少的值。...准备 此秘籍将数据帧的索引,列和数据提取到单独的变量中,然后说明如何从同一对象继承列和索引。...或者,您可以使用dtypes属性来获取每一列的确切数据类型。select_dtypes方法在其include参数中获取数据类型的列表,并返回仅包含那些给定数据类型的列的数据帧。...Pandas 还有 NumPy 中不提供的其他分类数据类型。 当转换为category时,Pandas 内部会创建从整数到每个唯一字符串值的映射。 因此,每个字符串仅需要在内存中保留一次。...在分析期间,可能首先需要找到一个数据组,该数据组在单个列中包含最高的n值,然后从该子集中找到最低的m基于不同列的值。

    37.6K10

    seaborn的介绍

    这些数据集没有什么特别之处; 它们只是pandas数据帧,我们可以用pandas.read_csv加载它们或手工构建它们。许多示例使用“提示”数据集,这非常无聊,但对于演示非常有用。...(image-af56dc-1539877746137-10)] 专业分类图 标准散点图和线图可视化数值变量之间的关系,但许多数据分析涉及分类变量。...类似于relplot(),它的想法catplot()是它暴露了一个通用的面向数据集的API,它概括了一个数值变量和一个(或多个)分类变量之间关系的不同表示。...例如,时间序列数据有时与每个时间点一起存储为同一观察单元的一部分并出现在列中。...我们上面使用的“fmri”数据集说明了整齐的时间序列数据集如何在不同的行中包含每个时间点: 学科 时间点 事件 区域 信号 0 S13 18 STIM 顶叶 -0.017552 1 S5 14 STIM

    4K20

    时间序列数据处理,不再使用pandas

    而对于多变量时间序列,则可以使用带有多列的二维 Pandas DataFrame。然而,对于带有概率预测的时间序列,在每个周期都有多个值的情况下,情况又如何呢?...图(1)展示了销售额和温度变量的多变量情况。每个时段的销售额预测都有低、中、高三种可能值。...维度:多元序列的 "列"。 样本:列和时间的值。在图(A)中,第一周期的值为 [10,15,18]。这不是一个单一的值,而是一个值列表。...将图(3)中的宽格式商店销售额转换一下。数据帧中的每一列都是带有时间索引的 Pandas 序列,并且每个 Pandas 序列将被转换为 Pandas 字典格式。...在沃尔玛商店的销售数据中,包含了时间戳、每周销售额和商店 ID 这三个关键信息。因此,我们需要在输出数据表中创建三列:时间戳、目标值和索引。

    21810

    Python探索性数据分析,这样才容易掌握

    为了这个分析,我在 Jupyter 中检查和操作了包含 2017 年和 2018 年 SAT 和 ACT 数据的 CSV 数据文件。...首先,让我们使用 .value_counts() 方法检查 ACT 2018 数据中 “State” 列的值,该方法按降序显示数据帧中每个特定值出现的次数: ?...为了比较州与州之间 SAT 和 ACT 数据,我们需要确保每个州在每个数据帧中都被平等地表示。这是一次创新的机会来考虑如何在数据帧之间检索 “State” 列值、比较这些值并显示结果。...我的方法如下图展示: ? 函数 compare_values() 从两个不同的数据帧中获取一列,临时存储这些值,并显示仅出现在其中一个数据集中的任何值。...因此,我将在每个数据帧中保留的唯一列是 “State”、“Participation”、“Total” (仅SAT) 和 “Composite” (仅ACT)。

    5K30

    Pandas 秘籍:6~11

    序列和数据帧的列必须具有齐次数值数据类型; 因此,每个值都转换为浮点数。 对于这个小的数据集,这几乎没有什么区别,但是对于较大的数据集,这可能会对内存产生重大影响。...出乎意料的是,MD_EARN_WNE_P10和GRAD_DEBT_MDN_SUPP均为object数据类型。 导入时,如果列中至少包含一个字符串,则 pandas 将列的所有数值强制转换为字符串。...分类变量将每列的所有值映射为一个整数。 我们可以选择此映射为月份的正常时间顺序。...如您所见,当在其索引上对齐多个数据帧时,concat通常比合并好得多。 在第 9 步中,我们切换档位以关注merge具有优势的情况。merge方法是唯一能够按列值对齐调用和传递的数据帧的方法。...开始可视化任何数据集时的一种简单策略是仅关注单变量图。 最受欢迎的单变量图往往是用于分类数据(通常是字符串)的条形图,以及用于连续数据(总是数字)的直方图,箱形图或 KDE。

    34K10

    左手用R右手Python系列——因子变量与分类重编码

    今天这篇介绍数据类型中因子变量的运用在R语言和Python中的实现。 因子变量是数据结构中用于描述分类事物的一类重要变量。其在现实生活中对应着大量具有实际意义的分类事物。...因子变量从信息含量上来看,其要比单纯的定性变量(文本变量)所包含的描述信息多一些,但是又比数值型变量(定距变量和定比变量)所表述的信息含量少一些。...include.lowest则根据right的设定,决定是否应该包含端点值(如果right为TRUE,左开右闭区间,则包含最小值,如果right为FALSE,左闭右开区间则包含最大值),默认为FALSE...Python ---- 在Python中,Pandas库包含了处理因子变量的一整套完整语法函数。..."b","c","a"]) s2 = s.astype('category',categories=["a","b","c"],ordered=True) s2.astype(str) 最后讲一下,如何在数据框中分割数值型变量为因子变量

    2.6K50

    Pandas数据应用:机器学习预处理

    数据加载与初步检查1.1 数据加载在开始任何预处理之前,首先需要将数据加载到Pandas DataFrame中。Pandas支持多种文件格式,如CSV、Excel、JSON等。...对于分类变量,可以使用众数填充;对于数值变量,可以使用均值或中位数填充。3. 数据类型转换3.1 类型转换确保数据类型正确是预处理的重要步骤。Pandas提供了astype()方法来进行类型转换。...分类变量编码5.1 One-Hot编码分类变量通常需要转换为数值形式才能用于机器学习模型。One-Hot编码是一种常用的编码方式。...解决方案:对于高基数分类变量,可以考虑使用其他编码方式,如Target Encoding或Frequency Encoding。...Label Encoding仅适用于有序分类变量,对于无序分类变量应优先使用One-Hot编码。结语通过以上步骤,我们可以有效地使用Pandas进行机器学习预处理。

    21610

    Pandas 学习手册中文第二版:1~5

    它还将设置几个选项来控制 Pandas 如何在 Jupyter 笔记本中渲染输出。 该代码包含以下内容: 第一条语句导入 NumPy 并将库中的项目引用为np.。...这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...该文件名为sp500.csv,位于代码包的data目录中。 文件的第一行包含每个变量/列的名称,其余 500 行代表 500 种不同股票的值。...-2e/img/00171.jpeg)] 请注意,尽管我们在加载时指定了四列,但结果仅包含三列,因为源文件中四列之一用于索引。

    8.3K10

    Python的9个特征工程技术

    但是由于数据集减少,这可能会降低数据集的性能。再次使用Pandas是最简单的方法: data = pd.read_csv('....在索引3的行中观察缺失值: 如果仅将其替换为简单值,则对于分类和数值特征,将应用相同的值: data = data.fillna(0) 在数字特征culmen_length_mm,culmen_depth_mm...顾名思义这些变量具有离散值,代表某种类别或类别。例如,颜色可以是分类变量(“红色”,“蓝色”,“绿色”)。挑战在于将这些变量包括在数据分析中,并将其与机器学习算法一起使用。...本质上每个功能中的每个类别都有一个单独的列。通常仅将一热编码值用作机器学习算法的输入。 2.3计数编码 计数编码是将每个分类值转换为其频率,即它出现在数据集中的次数。...例如,当想对看起来像这样的数值特征进行分类时: 0-10 –低 10-50 –中 50-100 –高 在这种情况下,将数字特征替换为分类特征。 但是,也可以对分类值进行分类。

    1K31

    整理了10个经典的Pandas数据查询案例

    PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。

    24120

    整理了10个经典的Pandas数据查询案例

    PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas中的query()方法还可以在查询表达式中使用数学计算。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用dt访问者仅提取整个日期值的月份值。

    3.9K20

    10个快速入门Query函数使用的Pandas的查询示例

    而括号符号[]可以灵活地基于条件过滤数据帧,但是如果条件很多的话编写代码是繁琐且容易出错的。...那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...与数值的类似可以在同一列或不同列上使用多个条件,并且可以是数值和非数值列上条件的组合。 除此以外, Pandas Query()还可以在查询表达式中使用数学计算。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...OrderDate.dt.month显示了如何使用DT访问者仅提取整个日期值的月份值。

    4.4K20

    如何在 Python 中将分类特征转换为数字特征?

    在机器学习中,数据有不同的类型,包括数字、分类和文本数据。分类要素是采用一组有限值(如颜色、性别或国家/地区)的特征。...标签编码 标签编码是一种用于通过为每个类别分配一个唯一的整数值来将分类数据转换为数值数据的技术。例如,可以分别为类别为“红色”、“绿色”和“蓝色”的分类特征(如“颜色”)分配值 0、1 和 2。...然后,我们将编码器拟合到数据集的“颜色”列,并将该列转换为其编码值。 独热编码 独热编码是一种将类别转换为数字的方法。...然后,我们创建 TargetEncoder 类的实例,并将“颜色”列指定为要编码的列。我们将编码器拟合到数据集,并使用目标变量作为目标将列转换为其目标编码值。...将分类特征转换为数值特征有助于机器学习算法更准确地处理和分析分类数据,从而生成更好的模型。

    73020

    盘一盘 Python 系列 - Cufflinks (下)

    width:字典、列表或整数格式,用于设置轨迹宽度 字典:{column:value} 按数据帧中的列标签设置宽度 列表:[value] 对每条轨迹按顺序的设置宽度 整数:具体数值,适用于所有轨迹 --...布尔:True 对所有列的数据都做拟合 列表:[columns] 对列表中包含列的数据做拟合 ---- bestfit_colors:字典或列表格式,用于设定数据拟合线的颜色。...字典:{column:color} 按数据帧中的列标签设置颜色 列表:[color] 对每条轨迹按顺序的设置颜色 ---- categories:字符串格式,数据帧中用于区分类别的列标签 x:字符串格式...,数据帧中用于 x 轴变量的列标签 y:字符串格式,数据帧中用于 y 轴变量的列标签 z:字符串格式,数据帧中用于 z 轴变量的列标签 (只适用 3D 图) text:字符串格式,数据帧用于显示文字的列标签...values:字符串格式,将数据帧中的列数据的值设为饼状图每块的面积,仅当 kind = pie 才适用。

    4.6K10

    Python数据清洗 & 预处理入门完整指南

    最后的「.values」表示希望提取所有的值。接下来,我们希望创建保存因变量的向量,取数据的最后一列。...「:」表示希望提取所有行的数据,0表示希望提取第一列) 这就是将第一列中的属性变量替换为数值所需的全部工作了。例如,麋鹿将用0表示,狗将用2表示,猫将用3表示。 你发现什么潜在问题了吗?...标注体系暗含以下信息:所使用的数值层级关系可能会影响模型结果:3 比 0 的数值大,但猫并不一定比麋鹿大。 我们需要创建哑变量。 我们可以为猫创建一列数据,为麋鹿创建一列数据,……以此类推。...如果我们的Y列也是如「Y」和「N」的属性变量,那么我们也可以在其上使用这个编码器。...看看我们的数据。我们有一列动物年龄,范围是4~17,还有一列动物价值,范围是83,000。价值一栏的数值不仅远大于年龄一栏,而且它还包含更加广阔的数据范围。

    1.3K20
    领券