首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

推荐:这才是你寻寻觅觅想要的 Python 可视化神器

进行可视化时,你可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图 ? 箱形图 ? 小提琴图 ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...例如,你可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作: ?...在这里,在使用 Plotly Express 生成原始图形之后,我们使用 Plotly.py 的 API 来更改一些图例设置并添加注释。

5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    强烈推荐一款Python可视化神器!

    翻译 | Lemon 来源 | Plotly 出品 | Python数据之道 (ID:PyDataRoad) Plotly Express 入门之路 Plotly Express 是一个新的高级 Python...进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: ? 箱形图: ? 小提琴图: ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作: ?

    4.4K30

    这才是你寻寻觅觅想要的 Python 可视化神器!

    进行可视化时,您可以使用单变量设置中的直方图(histograms)和箱形图(box)或小提琴图(violin plots),或双变量分布的密度等高线图(density contours)。...上述动态图包含 10多张 图片的可视化,『Python数据之道』已将代码整合到 jupyter notebook 文件中,在公号回复 “code” 即可获得源代码。 下图即是其中的一个图形: ?...使用直方图(histograms),箱形图(box)或小提琴图(violin plots)可视化单变量分布: 直方图: ? 箱形图: ? 小提琴图: ?...还可以创建联合分布图(marginal rugs),使用直方图,箱形图(box)或小提琴来显示双变量分布,也可以添加趋势线。...例如,您可以将 .update() 调用链接到 px 调用以更改图例设置并添加注释。 .update() 现在返回修改后的数字,所以你仍然可以在一个很长的 Python 语句中执行此操作: ?

    4.2K21

    10个实用的数据可视化的图表总结

    2、六边形分箱图 (Hexagonal Binning) 六边形分箱图是一种用六边形直观表示二维数值数据点密度的方法。...ax = df.plot.hexbin(x='sepal_width', y='sepal_length', gridsize=20,color='#BDE320') 我考虑了上一节的数据集来绘制上面的六边形分箱图...Pandas 允许我们绘制六边形 binning [2]。我已经展示了用于查找 sepal_width 和 sepal_length 列的密度的图。...6、箱线图的改进版(Boxen plot) Boxenplot 是 seaborn 库引入的一种新型箱线图。对于箱线图,框是在四分位数上创建的。但在 Boxenplot 中,数据被分成更多的分位数。...我们也可以用这个图从文本中找到经常出现的单词。 总结 数据可视化是数据科学中不可缺少的一部分。在数据科学中,我们与数据打交道。手工分析少量数据是可以的,但当我们处理数千个数据时它就变得非常麻烦。

    2.4K50

    用Python的Plotly画出炫酷的数据可视化(含各类图介绍)

    在谈及数据可视化的时候,我们通常都会使用到matplotlylib,pyecharts这些可视化的手段。但是,今天我主要来介绍Plotly这款可视化的库。...plotly提供了Python的支持库,使用pip直接安装就可以: pip install plotly 在python里面使用plotly画图非常的简单,我们先来看一个简单的柱状图例子: import...箱型图 箱形图(Box-plot)又称为盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因形状如箱子而得名。在各种领域也经常被使用,常见于品质管理。...三元图 三元图,又称三元相图(Ternary plot)有三个坐标轴,它的三个坐标轴“首尾相接”成夹角为60度的等边三角形。...当然,除此之外,还有其他种类的图,如果大家对plotly感兴趣可以去访问它的网站: https://plotly.com/python/statistical-charts/ ?

    3.2K51

    手把手教你用plotly绘制excel中常见的16种图表(下)

    大家好,我是才哥。 上一期咱们介绍《手把手教你用plotly绘制excel中常见的16种图表(上)》演示了8种常见图表,今天我们继续演示另外8种常见图表的绘制。...树状图 2. 旭日图 3. 直方图 4. 箱形图 5. 瀑布图 6. 漏斗图 7. 股价图 8. 地图 1. 树状图 树状图提供数据的分层视图,并便于识别模式,例如哪些商品是商店的畅销商品。...离散分类下同柱状图 4. 箱型图 箱型图又称盒须图,用于显示数据到四分位点的分布,突出显示平均值和离群值。箱形可能具有可垂直延长的名为“须线”的线条。...由于拥有这样的“外观”,瀑布图也称为桥梁图。 在plotly.express中暂时没有瀑布图,我们需要用到plotly.graph_objects。...不过这种图表也可以显示其他数据(如日降雨量和每年温度)的波动,必须按正确的顺序组织数据才能创建股价图。

    2.3K30

    python数据可视化第三方库有哪些_数据可视化!看看程序员大佬都推荐的几大Python库…

    大家好,又见面了,我是你们的朋友全栈君。 数据可视化是数据分析中极为重要的部分,而数据可视化图表(如条形图,散点图,折线图,地理图等)也是非常关键的一环。...它可以用于使用各种GUI工具箱(例如Tkinter,GTK +,wxPython,Qt等)将绘图嵌入到应用程序中。...Plotly提供了40多种独特的图表类型,例如散点图,直方图,折线图,条形图,饼图,误差线,箱形图,多轴,迷你图,树状图,3-D图表等。Plotly还提供了等高线图,其中在其他数据可视化库中并不常见。...Seaborn还具有各种工具来选择可以显示数据中图案的调色板。 GGplot Ggplot是一个Python数据可视化库,它基于为编程语言R创建的ggplot2的实现为基础。...Ggplot也与熊猫紧密相连,因此最好将数据保留在DataFrames中。 Altair Altair是Python中的统计数据可视化库。

    2.8K10

    用可视化探索数据特征的N种姿势

    直方图探索分布 直方图是数值数据分布的精确图形表示。直方图通过将可能的值分散到箱中,并显示落入每个箱中到对象数,显示属性值到分布。 对于分类属性,每个值在一个箱中,如果值过多,则使用某种方法将值合并。...对于连续属性,将值域划分成箱(通常是等宽)并对每个箱中对值计数。 一旦有了每个箱对计数,就可以构造条形图,每个箱用一个条形表示,并且每个条形对面积正比于落在对应区间对值对个数。...盒须图探索离散分布 箱形图Box plot又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因型状如箱子而得名。...箱形图最大的优点就是不受异常值的影响,可以以一种相对稳定的方式描述数据的离散分布情况。...几种可交互图形 plotly二维可交互图 plotly和经典Matplotlib最大的不同是plotly可以生成交互式的数据图表。

    2.1K20

    在Python中用Seaborn美化图表的3个示例

    ggplot似乎不是Python固有的,所以感觉我一直在努力使它对我有用。 Plotly有一个“社区版本”,这让我对这部分未来是否许可有一定担忧,因此我通常会远离这些内容。...在分层讨论方面非常有用,我强烈建议您使用。 箱形图和晶须图 分布图的问题在于,它们常常会被异常值扭曲,除非您知道这些异常值存在并且进行处理。...箱形图得到了广泛的使用,它是一种显示可靠的指标的有效方法,例如中位数和四分位数范围,它们对于异常值(由于其较高的分解点)具有更大的弹性, Seaborn的箱形图实施方式看起来很棒,因为它可以突出显示多个维度来传达一个相当复杂的指标...图4:箱形图和晶须图 同时识别和讨论多种功能和模式对于您的研究成功至关重要,因此,我强烈建议您使用此图表。同时,您需要确保将图表定位到您的受众群体!...在上面的文章中,我广泛讨论了为什么对我来说Seaborn是最好的绘图程序包,并给出了我使用的3个图表示例。我坚信以一种容易理解的方式传达信息:文字越少越好!坚持才是关键!

    1.3K20

    最强 Python 数据可视化库,没有之一!

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。...在使用 pip install cufflinks plotly 完成安装后,你可以用下面这样的代码在 Jupyter 里完成导入: 单变量分布:柱状图和箱形图 单变量分析图往往是开始数据分析时的标准做法...: (代码中的 df 是标准的 Pandas dataframe 对象) (使用 plotly+cufflinks 创建的交互式柱状图) 对于已经习惯 matplotlib 的同学,你们只需要多打一个字母...箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分!...我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。 (用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。

    2K31

    Plotly,是时候表演真正的技术了

    在本文中,我们将直接上手使用Plotly,学习如何在更短的时间内制作出更好的图表。...我们可以使用log轴(指定为绘图布局)(参见Plotly文档-中的布局细节-https://plot.ly/python/reference/)以及数值变量来调整气泡,让图表更复杂一点: tds.iplot...06 在Plotly Chart Studio中编辑 当你在Notebook中制作这些图时,你会注意到图表右下角有一个小链接,上面写着“Export to plot.ly”。...你可以添加注释,指定颜色,并清理所有不相关的内容来得到一张出色的图。然后,你可以在线发布图,以便任何人都可以通过链接找到它。 下面是我在Chart Studio中发布的两个图表: ? ?...▲A plot of my enjoyment with plotting in Python over time 现在是2019年,是时候升级您的Python绘图库,以便在数据可视化中实现更优的效率,

    1.9K20

    功能强大、文档健全的开源 Python 绘图库 Plotly,手把手教你用!

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。...单变量分布:柱状图和箱形图 单变量分析图往往是开始数据分析时的标准做法,而柱状图基本上算是单变量分布分析时必备的图表之一(虽然它还有一些不足)。...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: ? ?...交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分! ?...我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。 ? (用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。

    4.2K52

    最强最炫的Python数据可视化神器,没有之一!

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。...在使用 pip install cufflinks plotly 完成安装后,你可以用下面这样的代码在 Jupyter 里完成导入: 单变量分布:柱状图和箱形图 单变量分析图往往是开始数据分析时的标准做法...: (代码中的 df 是标准的 Pandas dataframe 对象) (使用 plotly+cufflinks 创建的交互式柱状图) 对于已经习惯 matplotlib 的同学,你们只需要多打一个字母...箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分!...我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。 (用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。

    1.4K10

    超强 Python 数据可视化库,一文全解析

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。...在使用 pip install cufflinks plotly 完成安装后,你可以用下面这样的代码在 Jupyter 里完成导入: 单变量分布:柱状图和箱形图 单变量分析图往往是开始数据分析时的标准做法...: (代码中的 df 是标准的 Pandas dataframe 对象) (使用 plotly+cufflinks 创建的交互式柱状图) 对于已经习惯 matplotlib 的同学,你们只需要多打一个字母...箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分!...我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。 (用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。

    1.1K40

    Python Plotly交互可视化详解

    我之前一直守着 matplotlib 用的原因,就是为了我学会它复杂的语法,已经“沉没"在里面的几百个小时的时间成本。...在使用 pip install cufflinks plotly 完成安装后,你可以用下面这样的代码在 Jupyter 里完成导入: 单变量分布:柱状图和箱形图 单变量分析图往往是开始数据分析时的标准做法...就拿博客文章点赞总数为例做一个简单的交互式柱状图: (代码中的 df 是标准的 Pandas dataframe 对象) (使用 plotly+cufflinks 创建的交互式柱状图) 对于已经习惯 matplotlib...箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分!...我承认,绘图绝对是数据科学工作中最让人享受的部分,而 plotly 能让你更加愉悦地完成这些任务。 (用一张图表显示一下用 Python 绘图的愉悦程度随着时间变化。

    63810

    Plotly,是时候表演真正的技术了(附代码)

    在过去的几个月里,我意识到我使用Matplotlib的唯一原因是我花费了数百小时去学习它复杂的语法。...在本文中,我们将直接上手使用Plotly,学习如何在更短的时间内制作出更好的图表。...我们可以使用log轴(指定为绘图布局)(参见Plotly文档-中的布局细节-https://plot.ly/python/reference/)以及数值变量来调整气泡,让图表更复杂一点: tds.iplot...在Plotly Chart Studio中编辑 当你在Notebook中制作这些图时,你会注意到图表右下角有一个小链接,上面写着“Export to plot.ly”。...你可以添加注释,指定颜色,并清理所有不相关的内容来得到一张出色的图。然后,你可以在线发布图,以便任何人都可以通过链接找到它。 下面是我在Chart Studio中发布的两个图表: ? ?

    2.5K20

    Python中最常用的 14 种数据可视化类型的概念与代码

    以下是如何在情节中做到这一点: import plotly.express as px df = px.data.gapminder().query("country=='Canada'") fig =...a_BSpline = interpolate.make_interp_spline(x, y) y_new = a_BSpline(x_new) ax[1].plot(x_new, y_new) 箱形图...箱形图又称盒须图、盒式图或箱线图,是利用数据中的五个统计量:最小值、第一四分位数、中位数、第三四分位数与最大值来显示一组数据分布情况的统计图。...小提琴图 一般来说,小提琴图是一种绘制连续型数据的方法,可以认为是箱形图与核密度图的结合体。当然了,在小提琴图中,我们可以获取与箱形图中相同的信息。...我们一起学习了 plotly 和 seaborn 中的代码来生成这些图。为了更好地理解,介绍了在 plotly 和 seaborn 中使用哪些方法和属性来生成这些图。

    9.6K20

    Python和Plotly实用统计与可视化

    图1 箱形图 绘制数据中所有房屋的SalePrice的箱线图。箱形图不显示分布的形状,但它们可以更好地了解分布的中心和扩散以及可能存在的任何潜在异常值。...箱形图和直方图通常相互补充,有助于更多地了解数据。 df['SalePrice'].iplot(kind='box', title='Box plot of SalePrice') ?...图2 组的直方图和箱图 按组绘图,可以看到变量如何响应另一个变化。例如如果房屋SalePrice与中央空调之间存在差异。或者如果房屋SalePrice根据车库的大小而变化,等等。...房屋销售价格的箱形图和直方图按有或没有空调分组 trace0 = go.Box( y=df.loc[df['CentralAir'] == 'Y']['SalePrice'], name...将创建一个新的HouseAge列,然后将数据划分为HouseAge层,并在每个层内构建销售价格的并排箱图。

    2.2K30
    领券